You are looking at 1 - 10 of 195 items for :

  • Athletic Training, Therapy, and Rehabilitation x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: Content accessible to me x
Clear All
Free access

J.D. DeFreese, Daniel J. Madigan, and Henrik Gustafsson

Free access

Justin Fernandez, Vickie Shim, Marco Schneider, Julie Choisne, Geoff Handsfield, Ted Yeung, Ju Zhang, Peter Hunter, and Thor Besier

In this narrative review, we explore developments in the field of computational musculoskeletal model personalization using the Physiome and Musculoskeletal Atlas Projects. Model geometry personalization; statistical shape modeling; and its impact on segmentation, classification, and model creation are explored. Examples include the trapeziometacarpal and tibiofemoral joints, Achilles tendon, gastrocnemius muscle, and pediatric lower limb bones. Finally, a more general approach to model personalization is discussed based on the idea of multiscale personalization called scaffolds.

Free access

Alex Bersani, Giorgio Davico, and Marco Viceconti

This review paper provides an overview of the approaches to model neuromuscular control, focusing on methods to identify nonoptimal control strategies typical of populations with neuromuscular disorders or children. Where possible, the authors tightened the description of the methods to the mechanisms behind the underlying biomechanical and physiological rationale. They start by describing the first and most simplified approach, the reductionist approach, which splits the role of the nervous and musculoskeletal systems. Static optimization and dynamic optimization methods and electromyography-based approaches are summarized to highlight their limitations and understand (the need for) their developments over time. Then, the authors look at the more recent stochastic approach, introduced to explore the space of plausible neural solutions, thus implementing the uncontrolled manifold theory, according to which the central nervous system only controls specific motions and tasks to limit energy consumption while allowing for some degree of adaptability to perturbations. Finally, they explore the literature covering the explicit modeling of the coupling between the nervous system (acting as controller) and the musculoskeletal system (the actuator), which may be employed to overcome the split characterizing the reductionist approach.

Free access

Kazuya Inoue, Tatsuto Yamada, and Tomu Ohtsuki

Despite the high prevalence of yips, a psychoneuromuscular impairment affecting fine motor skills in sports performance, the specific aspects of its causality and treatment have not been identified or verified. This cross-sectional study examined psychosocial factors relating to throwing yips in baseball. Amateur baseball players (N = 292) living in Japan completed a self-report questionnaire on their anxiety/fear about throwing the ball, the Acceptance and Action Questionnaire-II, the Cognitive Fusion Questionnaire, the Short Fear of Negative Evaluation Scale, and self-reports evaluating values and social factors relevant to baseball. A hierarchical multiple regression analysis indicated that a low values-based throwing score, a high Cognitive Fusion Questionnaire score, and overreprimanding others’ mistakes were positively associated with baseball players’ yips symptoms. These results suggest that changing the context of playing baseball, reducing cognitive fusion, and improving coaching methods could reduce the risk of baseball players’ throwing yips.

Free access

David J. Saxby, Claudio Pizzolato, and Laura E. Diamond

There is a powerful global trend toward deeper integration of digital twins into modern life driven by Industry 4.0 and 5.0. Defense, agriculture, engineering, manufacturing, and urban planning sectors have thoroughly incorporated digital twins to great benefit across their respective product lifecycles. Despite clear benefits, a digital twin framework for health and medical sectors is yet to emerge. This paper proposes a digital twin framework for precision neuromusculoskeletal health care. We build upon the International Standards Organization framework for digital twins for manufacturing by presenting best available computational models within a digital twin framework for clinical application. We map a use case for modeling Achilles tendon mechanobiology, highlighting how current modeling practices align with our proposed digital twin framework. Similarly, we map a use case for advanced neurorehabilitation technology, highlighting the role of a digital twin in control of systems where human and machine are interfaced. Future work must now focus on creating an informatic representation to govern how digital data are passed to, from, and within the digital twin, as well as specific standards to declare which measurement systems and modeling methods are acceptable to move toward widespread use of the digital twin framework for precision neuromusculoskeletal health care.

Free access

Kirsten Veerkamp, Christopher P. Carty, Niels F.J. Waterval, Thomas Geijtenbeek, Annemieke I. Buizer, David G. Lloyd, Jaap Harlaar, and Marjolein M. van der Krogt

Spasticity is a common impairment within pediatric neuromusculoskeletal disorders. How spasticity contributes to gait deviations is important for treatment selection. Our aim was to evaluate the pathophysiological mechanisms underlying gait deviations seen in children with spasticity, using predictive simulations. A cluster analysis was performed to extract distinct gait patterns from experimental gait data of 17 children with spasticity to be used as comparative validation data. A forward dynamic simulation framework was employed to predict gait with either velocity- or force-based hyperreflexia. This framework entailed a generic musculoskeletal model controlled by reflexes and supraspinal drive, governed by a multiobjective cost function. Hyperreflexia values were optimized to enable the simulated gait to best match experimental gait patterns. Three experimental gait patterns were extracted: (1) increased knee flexion, (2) increased ankle plantar flexion, and (3) increased knee flexion and ankle plantar flexion when compared with typical gait. Overall, velocity-based hyperreflexia outperformed force-based hyperreflexia. The first gait pattern could mostly be explained by rectus femoris and hamstrings velocity-based hyperreflexia, the second by gastrocnemius velocity-based hyperreflexia, and the third by gastrocnemius, soleus, and hamstrings velocity-based hyperreflexia. This study shows how velocity-based hyperreflexia from specific muscles contributes to different spastic gait patterns, which may help in providing targeted treatment.

Open access

Jiri Skypala, Joseph Hamill, Michal Sebera, Steriani Elavsky, Andrea Monte, and Daniel Jandacka

There are relatively few running studies that have attempted to prospectively identify biomechanical risk factors associated with Achilles tendon (AT) injuries. Therefore, the aim was to prospectively determine potential running biomechanical risk factors associated with the development of AT injuries in recreational, healthy runners. At study entry, 108 participants completed a set of questionnaires. They underwent an analysis of their running biomechanics at self-selected running speed. The incidence of AT running-related injuries (RRI) was assessed after 1-year using a weekly questionnaire standardized for RRI. Potential biomechanical risk factors for the development of AT RRI injury were identified using multivariable logistic regression. Of the 103 participants, 25% of the sample (15 males and 11 females) reported an AT RRI on the right lower limb during the 1-year evaluation period. A more flexed knee at initial contact (odds ratio = 1.146, P = .034) and at the midstance phase (odds ratio = 1.143, P = .037) were significant predictors for developing AT RRI. The results suggested that a 1-degree increase in knee flexion at initial contact and midstance was associated with a 15% increase in the risk of an AT RRI, thus causing a limitation of training or a stoppage of running in runners.

Free access

Ioanna Kontele, Tonia Vassilakou, Maria Psychountaki, Justine J. Reel, and Olyvia Donti

Weight Pressures in Sport—Females (WPS-F) questionnaire measures sport-related pressures that female athletes experience regarding body weight, shape, size, and appearance. In order to examine the psychometric properties of the Greek version of the inventory, two different studies were conducted. In the first study, using a sample (n = 225) of female Greek athletes aged 12–20 years, exploratory factor analysis produced two factors (Factor 1: Pressures From Coaches and Sports About Weight and Factor 2: Pressures Regarding Appearance and Performance) and supported the original factor structure. In the second study, using a different sample (n = 318) of female Greek athletes aged 11–18 years, confirmatory factor analysis provided support for the two-factor structure. Weight Pressures in Sport—Females questionnaire was demonstrated to be a valid and reliable instrument for Greek female athletic populations. Future studies should further test the factorial structure in younger and older athletes and in larger samples.

Free access

Ilse Jonkers, Erica Beaucage-Gauvreau, Bryce Adrian Killen, Dhruv Gupta, Lennart Scheys, and Friedl De Groote

In this review, we elaborate on how musculoskeletal (MSK) modeling combined with dynamic movement simulation is gradually evolving from a research tool to a promising in silico tool to assist medical doctors and physical therapists in decision making by providing parameters relating to dynamic MSK function and loading. This review primarily focuses on our own and related work to illustrate the framework and the interpretation of MSK model-based parameters in patients with 3 different conditions, that is, degenerative joint disease, cerebral palsy, and adult spinal deformities. By selecting these 3 clinical applications, we also aim to demonstrate the differing levels of clinical readiness of the different simulation frameworks introducing in silico model-based biomarkers of motor function to inform MSK rehabilitation and treatment, with the application for adult spinal deformities being the most recent of the 3. Based on these applications, barriers to clinical integration and positioning of these in silico technologies within standard clinical practice are discussed in the light of specific challenges related to model assumptions, required level of complexity and personalization, and clinical implementation.

Free access

Marie-Reine El-Hage, Alexandra Wendling, Mindy F. Levin, and Anatol G. Feldman

The referent control theory (RCT) for action and perception is an advanced formulation of the equilibrium-point hypothesis. The RCT suggests that rather than directly specifying the desired motor outcome, the nervous system controls action and perception indirectly by setting the values of parameters of physical and physiological laws. This is done independently of values of kinematic and kinetic variables including electromyographic patterns describing the motor outcome. One such parameter—the threshold muscle length, λ, at which motoneurons of a given muscle begin to be recruited, has been identified experimentally. In RCT, a similar parameter, the referent arm position, R, has been defined for multiple arm muscles as the threshold arm position at which arm muscles can be quiescent but activated depending on the deflection of the actual arm position, Q, from R. Changes in R result in reciprocal changes in the activity of opposing muscle groups. We advanced the explanatory power of RCT by combining the usual biomechanical descriptions of motor actions with the identification of the timing of R underlying arm movements made with reversals in three directions and to three different extents. We found that in all movements, periods of minimization of the activity of multiple muscles could be identified at ∼61%–86% of the reaching extent in each direction. These electromyographic minimization periods reflect the spatial coordinates at which the R and Q overlap during the production of movements with reversals. The findings support the concept of the production of arm movement by shifting R.