Browse

You are looking at 1 - 10 of 59 items for :

  • Athletic Training, Therapy, and Rehabilitation x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: Content accessible to me x
Clear All
Full access

Jeff M. Barrett, Colin D. McKinnon, Clark R. Dickerson, and Jack P. Callaghan

Relatively few biomechanical models exist aimed at quantifying the mechanical risk factors associated with neck pain. In addition, there is a need to validate spinal-rhythm techniques for inverse dynamics spine models. Therefore, the present investigation was 3-fold: (1) the development of a cervical spine model in OpenSim, (2) a test of a novel spinal-rhythm technique based on minimizing the potential energy in the passive tissues, and (3) comparison of an electromyographically driven approach to estimating compression and shear to other cervical spine models. The authors developed ligament force–deflection and intervertebral joint moment–angle curves from published data. The 218 Hill-type muscle elements, representing 58 muscles, were included and their passive forces validated against in vivo data. Our novel spinal-rhythm technique, based on minimizing the potential energy in the passive tissues, disproportionately assigned motion to the upper cervical spine that was not physiological. Finally, using kinematics and electromyography collected from 8 healthy male volunteers, the authors calculated the compression at C7–T1 as a function of the head–trunk Euler angles. Differences from other models varied from 25.5 to 368.1 N. These differences in forces may result in differences in model geometry, passive components, number of degrees of freedom, or objective functions.

Open access

Andreas Kuettel, Natalie Durand-Bush, and Carsten H. Larsen

The purpose of this study was (a) to investigate gender differences in mental health among Danish youth soccer players, (b) to discover the mental health profiles of the players, and (c) to explore how career progression and mental health are related. A total of 239 Danish youth elite soccer players (M = 16.85, SD = 1.09) completed an online questionnaire assessing mental well-being, depression, anxiety, along with other background variables. Female players scored significantly lower on mental well-being and had four times higher odds of expressing symptoms of anxiety and depression than males. Athletes’ mental health profiles showed that most athletes experience low depression while having moderate mental well-being. Depression, anxiety, and stress scores generally increased when progressing in age, indicating that the junior–senior transition poses distinct challenges to players’ mental health, especially for female players. Different strategies to foster players’ mental health depending on their mental health profiles are proposed.

Open access

Eleftherios Paraskevopoulos, Georgios Gioftsos, Georgios Georgoudis, and Maria Papandreou

Adherence to exercise rehabilitation has been shown to be an important factor that may influence successful treatment. In professional athletes, a significant reduction in exercise adherence delays recovery. The aim of this study was to explore barriers to and facilitators of exercise rehabilitation adherence in injured volleyball athletes. Eight professional volleyball athletes were recruited, and qualitative data were collected using semistructured interviews. All athletes had completed their rehabilitation program after they had suffered a musculoskeletal injury. All data were analyzed using thematic analysis after the investigators ensured that saturation had been reached. Pain was identified as a significant barrier to exercise adherence by all athletes. The provision of social support, including mental, practical, and task related, also had a significant positive impact. The athletes’ ability to develop the necessary coping strategies and confidence on performing exercises at home was also mentioned as a factor that affected exercise adherence, although less often.

Full access

Valters Abolins and Mark L. Latash

We present a review on the phenomenon of unintentional finger action seen when other fingers of the hand act intentionally. This phenomenon (enslaving) has been viewed as a consequence of both peripheral (e.g., connective tissue links and multifinger muscles) and neural (e.g., projections of corticospinal pathways) factors. Recent studies have shown relatively large and fast drifts in enslaving toward higher magnitudes, which are not perceived by subjects. These and other results emphasize the defining role of neural factors in enslaving. We analyze enslaving within the framework of the theory of motor control with spatial referent coordinates. This analysis suggests that unintentional finger force changes result from drifts of referent coordinates, possibly reflecting the spread of cortical excitation.

Open access

Sara Oliveira, Marina Cunha, António Rosado, and Cláudia Ferreira

This study aimed to test a model that hypothesized that the compassionate coach, as perceived by the athletes, has an impact on athlete-related social safeness and psychological health, through shame and self-criticism. The sample comprised 270 Portuguese adult athletes, who practiced different competitive sports. The path analysis results confirmed the adequacy of the proposed model, which explained 45% of the psychological health’s variance. Results demonstrated that athletes who perceive their coaches as more compassionate tend to present higher levels of social safeness (feelings of belonging to the team) and of psychological health, through lower levels of shame and self-criticism. These novel findings suggest the importance of the adoption of supportive, warm, safe, and compassionate attitudes from coaches in athletes’ mental health. This study also offers important insights by suggesting that feelings of acceptance and connectedness in team relationships may be at the root of athletes’ emotional processes and well-being.

Full access

Eric J. Shumski, Tricia M. Kasamatsu, Kathleen S. Wilson, and Derek N. Pamukoff

Research has identified an increased risk of lower extremity injury postconcussion, which may be due to aberrant biomechanics during dynamic tasks. The purpose of this study was to compare the drop landing biomechanics between individuals with and without a concussion history. Twenty-five individuals with and 25 without a concussion history were matched on age (±3 y), sex, and body mass index (±1 kg/m2). Three-dimensional landing biomechanics were recorded to obtain dependent variables (peak vertical ground reaction force, loading rate, knee flexion angle and external moment, knee abduction angle and external moment, and knee flexion and abduction angle at ground contact). A 1-way multivariate analysis of variance compared outcomes between groups. There was no difference in drop landing biomechanics between individuals with and without a concussion history (F10,39 = 0.460, P = .877, Wilk Λ = .918). There was an effect of time since concussion on knee flexion characteristics. Time since most recent concussion explained a significant amount of variation in both peak (ΔR2 = .177, β = −0.305, ΔP = .046) and initial ground contact (ΔR2 = .292, β = −0.204, ΔP = .008) knee flexion angle after covarying for sex and body mass index. Therefore, time since concussion should be considered when evaluating biomechanical patterns.

Full access

Jillian L. Hawkins and Clare E. Milner

Differences in walking biomechanics between groups or conditions should be greater than the measurement error to be considered meaningful. Reliability and minimum detectable differences (MDDs) have not been determined for lower-extremity angles and moments during walking within a session, as needed for interpreting differences in cross-sectional studies. Thus, the purpose of this study was to determine within-session reliability and MDDs for peak ankle, knee, and hip angles and moments during walking. Three-dimensional gait analysis was used to record walking at 1.25 m/s (±5%) in 18 men, 18–50 years of age. Peak angles and moments were calculated for 2 sets of 3 trials. Intraclass correlation coefficients (3, 3) were used to determine within-session reliability. In addition, MDDs were calculated. Within-session reliability was good to excellent for all variables. The MDDs ranged from 0.9° to 3.6° for joint angles and 0.06 to 0.15 N·m/kg for joint moments. Within-session reliability for peak ankle, knee, and hip angles and moments was better than the between-session reliability reported previously. Overall, our MDDs were similar or smaller than those previously reported for between-session reliability. The authors recommend using these MDDs to aid in the interpretation of cross-sectional comparisons of lower-extremity biomechanics during walking in healthy men.

Open access

Michal Vágner, Zdeněk Bílek, Karel Sýkora, Vladimír Michalička, Lubomír Přívětivý, Miloš Fiala, Adam Maszczyk, and Petr Stastny

The aim of this study was to find the effect of holographic sight (HS) on short-distance shooting accuracy and precision during static and high-intensity dynamic actions. Twenty policemen (31 ± 2.2 years, 85.6 ± 6.1 kg, and 181.9 ± 4.4 cm) performed five shots in the 10-s limit under the static condition for 20 m and dynamic condition 15–5 m, and after 4 × 10 m sprint action, both with fixed sight (FS) and HS. The analysis of variance post hoc test revealed that HSstatic had higher shouting accuracy than FSstatic, FSdynamic, and HSdynamic (p = .03, p = .0001, and p = .0001, respectively) and FSdynamic had lower precision than FSstatic, HSstatic, and HSdynamic (p = .0003, p = .0001, and p = .01, respectively) in vertical sway. The HS for rifles has improved the accuracy of static shooting and vertical sway precision of dynamic shooting.

Full access

Allison H. Gruber, Shuqi Zhang, Jiahao Pan, and Li Li

The running footwear literature reports a conceptual disconnect between shoe cushioning and external impact loading: footwear or surfaces with greater cushioning tend to result in greater impact force characteristics during running. Increased impact loading with maximalist footwear may reflect an altered lower-extremity gait strategy to adjust for running in compliant footwear. The authors hypothesized that ankle and knee joint stiffness would change to maintain the effective vertical stiffness, as cushioning changed with minimalist, traditional, and maximalist footwear. Eleven participants ran on an instrumental treadmill (3.5 m·s−1) for a 5-minute familiarization in each footwear, plus an additional 110 seconds before data collection. Vertical, leg, ankle, and knee joint stiffness and vertical impact force characteristics were calculated. Mixed model with repeated measures tested differences between footwear conditions. Compared with traditional and maximalist, the minimalist shoes were associated with greater average instantaneous and average vertical loading rates (P < .050), greater vertical stiffness (P ≤ .010), and less change in leg length between initial contact and peak resultant ground reaction force (P < .050). No other differences in stiffness or impact variables were observed. The shoe cushioning paradox did not hold in this study due to a similar musculoskeletal strategy for running in traditional and maximalist footwear and running with a more rigid limb in minimalist footwear.

Full access

Karini Borges dos Santos, Paulo Cesar Barauce Bento, Carl Payton, and André Luiz Felix Rodacki

This study described the kinematic variables of disabled swimmers’ performance and correlated them with their functional classification. Twenty-one impaired swimmers (S5–S10) performed 50-m maximum front-crawl swimming while being recorded by four underwater cameras. Swimming velocity, stroke rate, stroke length, intracycle velocity variation, stroke dimensions, hand velocity, and coordination index were analyzed. Kendall rank was used to correlate stroke parameters and functional classification with p < .05. Swimming velocity, stroke length, and submerged phase were positively correlated with the para swimmers functional classification (.61, .50, and .41; p < .05, respectively), while stroke rate, velocity hand for each phase, coordination index, and intracyclic velocity variation were not (τ between −.11 and .45; p > .05). Thus, some objective kinematic variables of the impaired swimmers help to support current classification. Improving hand velocity seems to be a crucial point to be improved among disabled swimmers.