You are looking at 1 - 10 of 1,412 items for :

  • Refine by Access: Content accessible to me x
Clear All
Full access

Eugene Tee, Jack Melbourne, Larissa Sattler, and Wayne Hing

Context: Acute lateral ankle sprain (LAS) is a common injury in athletes and is often associated with decreased athletic performance and, if treated poorly, can result in chronic ankle issues, such as instability. Physical performance demands, such as cutting, hopping, and landing, involved with certain sport participation suggests that the rehabilitation needs of an athlete after LAS may differ from those of the general population. Objective: To review the literature to determine the most effective rehabilitation interventions reported for athletes returning to sport after acute LAS. Evidence Acquisition: Data Sources: Databases PubMed, Embase, CINAHL, SPORTDiscus, and PEDro were searched to July 2020. Study Selection: A scoping review protocol was developed and followed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews guidelines and registered ( Study selection included published articles on rehabilitation for ankle sprain in an athletic population. Data Extraction: Parameters included athlete and sport type, age, sex, intervention investigated, outcome measures, measurement tool, and follow-up period. Data Synthesis: A qualitative synthesis for all articles was undertaken, and a quantitative subanalysis of randomized controlled trials and critical methodological appraisal was also conducted. Evidence Synthesis: A total of 37 articles were included in this review consisting of 5 systematic and 20 narrative reviews, 7 randomized controlled trials, a single-case series, case report, position statement, critically appraised topic, and descriptive study. Randomized controlled trial interventions included early dynamic training, electrotherapy, and hydrotherapy. Conclusions: Early dynamic training after acute LAS in athletes results in a shorter time to return to sport, increased functional performance, and decreased self-reported reinjury. The results of this scoping review support an early functional and dynamic rehabilitation approach when compared to passive interventions for athletes returning to sport after LAS. Despite existing research on rehabilitation of LAS in the general population, a lack of evidence exists related to athletes seeking to return to sport.

Full access

Stephanie Wise and Jordan Bettleyon

Clinical Scenario: Carpal tunnel syndrome (CTS) is the most common entrapment neuropathy of the upper-extremity. Due to the involvement of the median nerve, long-term compression of this nerve can lead to hand dysfunction and disability that can impact work and daily life. As such, early treatment is warranted to prevent any long-term damage to the median nerve. Conservative management is utilized in those with mild to moderate CTS. Neural mobilizations can aid in the reduction of neural edema, neural mobility, and neural adhesion while improving nerve conduction. Clinical Question: Is neurodynamics effective in reducing pain and reported symptoms in those with CTS? Summary of Key Findings: Four studies were included, with 2 studies utilizing passive neural mobilizations, one study using active techniques, and one study using active neural mobilizations with splinting. All studies showed large effect size for pain, symptom severity, and physical function. Clinical Bottom Line: Neurodynamics is an effective treatment for CTS. Splinting is only effective when combined with neurodynamics. Strength of Recommendation: Level B evidence to support the use of neurodynamics for the treatment of CTS.

Open access

Alannah K.A. McKay, Trent Stellingwerff, Ella S. Smith, David T. Martin, Iñigo Mujika, Vicky L. Goosey-Tolfrey, Jeremy Sheppard, and Louise M. Burke

Throughout the sport-science and sports-medicine literature, the term “elite” subjects might be one of the most overused and ill-defined terms. Currently, there is no common perspective or terminology to characterize the caliber and training status of an individual or cohort. This paper presents a 6-tiered Participant Classification Framework whereby all individuals across a spectrum of exercise backgrounds and athletic abilities can be classified. The Participant Classification Framework uses training volume and performance metrics to classify a participant to one of the following: Tier 0: Sedentary; Tier 1: Recreationally Active; Tier 2: Trained/Developmental; Tier 3: Highly Trained/National Level; Tier 4: Elite/International Level; or Tier 5: World Class. We suggest the Participant Classification Framework can be used to classify participants both prospectively (as part of study participant recruitment) and retrospectively (during systematic reviews and/or meta-analyses). Discussion around how the Participant Classification Framework can be tailored toward different sports, athletes, and/or events has occurred, and sport-specific examples provided. Additional nuances such as depth of sport participation, nationality differences, and gender parity within a sport are all discussed. Finally, chronological age with reference to the junior and masters athlete, as well as the Paralympic athlete, and their inclusion within the Participant Classification Framework has also been considered. It is our intention that this framework be widely implemented to systematically classify participants in research featuring exercise, sport, performance, health, and/or fitness outcomes going forward, providing the much-needed uniformity to classification practices.

Open access

Ju-Yul Yoon, Seung-Rok Kang, Hye-Seong Kim, Yu Hui Won, Sung-Hee Park, Jeong-Hwan Seo, Myoung-Hwan Ko, and Gi-Wook Kim

Context: Whole-body vibration (WBV) training improves muscle strength and balance. Few studies have focused on the effects of WBV frequencies below 30 Hz. We aimed to investigate the effect of low-frequency WBV training on muscle activity, fatigue recovery, and oxygen consumption (VO2). Design: Prospective single-group, repeated-measures study. Methods: In this controlled laboratory setting study, 20 healthy adults (age 23.26 [1.66] y) performed half squats at 0, 4, 6, 8, 12, 16, 20, 24, and 30-Hz WBV. Muscle activity was evaluated using the root mean square and peak electromyography amplitude of 6 muscles (iliocostalis, rectus abdominis, rectus femoris, biceps femoris, tibialis anterior, and gastrocnemius) obtained via surface electromyography. VO2 was measured during the squats using a gas analyzer, and fatigue recovery was evaluated using measurements of lactate after the squats and after a recovery period. Statistical significance was set at P < .05, and analysis of variance was conducted to determine differences in muscle activity, fatigue, recovery, and VO2, with post hoc analyses as appropriate. Results: Of the 6 muscles measured, the muscle activity of the gastrocnemius alone significantly increased from 0 Hz at 4, 8, 12, 16, 24, and 30 Hz based on the root mean square values and at 4, 8, 12, and 30 Hz based on the peak electromyography amplitude values. There were no significant differences in the other muscles. There were no significant differences in VO2 or in lactate levels. Conclusions: Low-frequency WBV during squat exercises significantly increased the activity of the gastrocnemius medialis only at specific frequencies in healthy young adults. Low-frequency WBV is safe and has the potential to increase muscle activity.

Full access

Avril Johnstone, Paul McCrorie, Rita Cordovil, Ingunn Fjørtoft, Susanna Iivonen, Boris Jidovtseff, Frederico Lopes, John J. Reilly, Hilary Thomson, Valerie Wells, and Anne Martin

Background: The purpose was to synthesize evidence on the association between nature-based Early Childhood Education (ECE) and children’s physical activity (PA) and motor competence (MC). Methods: A literature search of 9 databases was concluded in August 2020. Studies were eligible if (1) children were aged 2–7 years old and attending ECE, (2) ECE settings integrated nature, and (3) assessed physical outcomes. Two reviewers independently screened full-text articles and assessed study quality. Synthesis was conducted using effect direction (quantitative), thematic analysis (qualitative), and combined using a results-based convergent synthesis. Results: 1370 full-text articles were screened and 39 (31 quantitative and 8 qualitative) studies were eligible; 20 quantitative studies assessed PA and 6 assessed MC. Findings indicated inconsistent associations between nature-based ECE and increased moderate to vigorous PA, and improved speed/agility and object control skills. There were positive associations between nature-based ECE and reduced sedentary time and improved balance. From the qualitative analysis, nature-based ECE affords higher intensity PA and risky play, which could improve some MC domains. The quality of 28/31 studies was weak. Conclusions: More controlled experimental designs that describe the dose and quality of nature are needed to better inform the effectiveness of nature-based ECE on PA and MC.

Open access

Grant C. Brechney, Jack Cannon, and Stephen P. Goodman

Weight cutting in combat sports is a prevalent practice whereby athletes voluntarily dehydrate themselves via various methods to induce rapid weight loss (RWL) to qualify for a lower weight category than that of their usual training body weight. The intention behind this practice is to regain the lost body mass and compete at a heavier mass than permitted by the designated weight category. The purpose of this study was to quantitatively synthesize the available evidence examining the effects of weight cutting on exercise performance in combat-sport athletes. Following a systematic search of the literature, meta-analyses were performed to compare maximal strength, maximal power, anaerobic capacity, and/or repeated high-intensity-effort performance before rapid weight loss (pre-RWL), immediately following RWL (post-RWL), and 3 to 36 hours after RWL following recovery and rapid weight gain (post-RWG). Overall, exercise performance was unchanged between pre-RWL and post-RWG (g = 0.22; 95% CI, −0.18 to 0.62). Between pre-RWL and post-RWL analyses revealed small reductions in maximal strength and repeated high-intensity-effort performance (g = −0.29; 95% CI, −0.54 to −0.03 and g = −0.37; 95% CI, −0.59 to −0.16, respectively; both P ≤ .03). Qualitative analysis indicates that maximal strength and power remained comparable between post-RWL and post-RWG. These data suggest that weight cutting in combat-sport athletes does not alter short-duration, repeated high-intensity-effort performance; however, there is evidence to suggest that select exercise performance outcomes may decline as a product of RWL. It remains unclear whether these are restored by RWG.

Open access

Rylee A. Dionigi, Maria Horne, Anne-Marie Hill, and Mary Ann Kluge

Open access

Lindsay B. Baker, Michelle A. King, David M. Keyes, Shyretha D. Brown, Megan D. Engel, Melissa S. Seib, Alexander J. Aranyosi, and Roozbeh Ghaffari

The purpose of this study was to compare a wearable microfluidic device and standard absorbent patch in measuring local sweating rate (LSR) and sweat chloride concentration ([Cl]) in elite basketball players. Participants were 53 male basketball players (25 ± 3 years, 92.2 ± 10.4 kg) in the National Basketball Association’s development league. Players were tested during a moderate-intensity, coach-led practice (98 ± 30 min, 21.0 ± 1.2 °C). From the right ventral forearm, sweat was collected using an absorbent patch (3M Tegaderm + Pad). Subsequently, LSR and local sweat [Cl] were determined via gravimetry and ion chromatography. From the left ventral forearm, LSR and local sweat [Cl] were measured using a wearable microfluidic device and associated smartphone application-based algorithms. Whole-body sweating rate (WBSR) was determined from pre- to postexercise change in body mass corrected for fluid/food intake (ad libitum), urine loss, and estimated respiratory water and metabolic mass loss. The WBSR values predicted by the algorithms in the smartphone application were also recorded. There were no differences between the absorbent patch and microfluidic patch for LSR (1.25 ± 0.91 mg·cm−2·min−1 vs. 1.14 ±0.78 mg·cm−2·min−1, p = .34) or local sweat [Cl] (30.6 ± 17.3 mmol/L vs. 29.6 ± 19.4 mmol/L, p = .55). There was no difference between measured and predicted WBSR (0.97 ± 0.41 L/hr vs. 0.89 ± 0.35 L/hr, p = .22; 95% limits of agreement = 0.61 L/hr). The wearable microfluidic device provides similar LSR, local sweat [Cl], and WBSR results compared with standard field-based methods in elite male basketball players during moderate-intensity practices.