Browse

You are looking at 1 - 10 of 259 items for :

  • Physical Education and Coaching x
  • International Journal of Sports Physiology and Performance x
  • Refine by Access: Content accessible to me x
Clear All
Free access

The Role of Musculoskeletal Training During Return to Performance Following Relative Energy Deficiency in Sport

Richard C. Blagrove, Katherine Brooke-Wavell, Carolyn R. Plateau, Carolyn Nahman, Amal Hassan, and Trent Stellingwerff

Background: Relative energy deficiency in sport (REDs) is a condition that is associated with negative health and performance outcomes in athletes. Insufficient energy intake relative to exercise energy expenditure, resulting in low energy availability, is the underlying cause, which triggers numerous adverse physiological consequences including several associated with musculoskeletal (MSK) health and neuromuscular performance. Purpose: This commentary aims to (1) discuss the health and performance implications of REDs on the skeletal and neuromuscular systems and (2) examine the role that MSK training (ie, strength and plyometric training) during treatment and return to performance following REDs might have on health and performance in athletes, with practical guidelines provided. Conclusions: REDs is associated with decreases in markers of bone health, lean body mass, maximal and explosive strength, and muscle work capacity. Restoration of optimal energy availability, mainly through an increase in energy intake, is the primary goal during the initial treatment of REDs with a return to performance managed by a multidisciplinary team of specialists. MSK training is an effective nonpharmacological component of treatment for REDs, which offers multiple long-term health and performance benefits, assuming the energy needs of athletes are met as part of their recovery. Supervised, prescribed, and gradually progressive MSK training should include a combination of resistance training and high-impact plyometric-based exercise to promote MSK adaptations, with an initial focus on achieving movement competency. Progressing MSK training exercises to higher intensities will have the greatest effects on bone health and strength performance in the long term.

Free access

A Biopsychosocial Framework for Sport Science: “A Jack of All Trades Is Oftentimes Better Than a Master of One”

Kerry McGawley

Free access

Effects of Different Conditioning Activities on the Sprint Performance of Elite Sprinters: A Systematic Review With Meta-Analysis

Irineu Loturco, Lucas A. Pereira, Túlio B.M.A. Moura, Michael R. McGuigan, and Daniel Boullosa

Purpose: Postactivation performance enhancement (PAPE), which refers to the phenomena associated with the attainment of enhanced performance in sport-specific tasks after a conditioning activity, is an important objective of warming-up practices in many sports. This is even more relevant for sprinters, as potential increases in sprinting speed will directly influence their competitive results. This systematic review with meta-analysis evaluated the effects of different PAPE protocols (ie, using plyometrics, strength-power exercises, and resisted/assisted sprints) on the sprinting performance (ie, sprint time or sprint speed) of competitive sprinters. Methods: Initially, 1205 records published until last December 18 were identified, using the following databases: PubMed/MEDLINE, Scopus, and Clarivate Web of Science. After removing duplicates and screening titles and abstracts, 14 high-quality studies met the inclusion criteria for the meta-analysis. Results: Overall, there were no significant changes in sprint performance after implementing various types of conditioning activities (standardized mean difference [SMD] = 0.16 [95% CI, −0.02 to 0.33]; Z = 1.78; P = .08; I 2 = 0%). In addition, when comparing prechanges and postchanges between experimental, control, and other conditions, no significant differences were found in sprint speed or time across all studies (SMD = 0.09 [95% CI, −0.10 to 0.28]; Z = 0.92; P = .36; I = 0%). Conclusions: Results revealed that different types of conditioning activities may not be capable of acutely enhancing the sprint speed of competitive sprinters. This aligns with previous observations indicating that sprinting is a highly stable physical capacity, a phenomenon that is even more consistent among elite sprinters. Coaches and sport scientists should collaborate to develop more efficient PAPE protocols for these highly specialized athletes, with special attention to study design and individualization, while considering their effects on acceleration versus top speed.

Open access

Predicting Injuries in Elite Female Football Players With Global-Positioning-System and Multiomics Data

Juan R. González, Alejandro Cáceres, Eva Ferrer, Laura Balagué-Dobón, Xavier Escribà-Montagut, David Sarrat-González, Guillermo Quintás, and Gil Rodas

Purpose: Injury prevention is a crucial aspect of sports, particularly in high-performance settings such as elite female football. This study aimed to develop an injury prediction model that incorporates clinical, Global-Positioning-System (GPS), and multiomics (genomics and metabolomics) data to better understand the factors associated with injury in elite female football players. Methods: We designed a prospective cohort study over 2 seasons (2019–20 and 2021–22) of noncontact injuries in 24 elite female players in the Spanish Premiership competition. We used GPS data to determine external workload, genomic data to capture genetic susceptibility, and metabolomic data to measure internal workload. Results: Forty noncontact injuries were recorded, the most frequent of which were muscle (63%) and ligament (20%) injuries. The baseline risk model included fat mass and the random effect of the player. Six genetic polymorphisms located at the DCN, ADAMTS5, ESRRB, VEGFA, and MMP1 genes were associated with injuries after adjusting for player load (P < .05). The genetic score created with these 6 variants determined groups of players with different profile risks (P = 3.1 × 10−4). Three metabolites (alanine, serotonin, and 5-hydroxy-tryptophan) correlated with injuries. The model comprising baseline variables, genetic score, and player load showed the best prediction capacity (C-index: .74). Conclusions: Our model could allow efficient, personalized interventions based on an athlete’s vulnerability. However, we emphasize the necessity for further research in female athletes with an emphasis on validation studies involving other teams and individuals. By expanding the scope of our research and incorporating diverse populations, we can bolster the generalizability and robustness of our proposed model.

Free access

Quantifying Hitting Load in Racket Sports: A Scoping Review of Key Technologies

Quim Brich, Martí Casals, Miguel Crespo, Machar Reid, and Ernest Baiget

Purpose: This scoping review aims to identify the primary racket and arm-mounted technologies based on inertial measurement units that enable the quantification of hitting load in racket sports. Methods: A comprehensive search of several databases (PubMed, SPORTDiscus, Web of Science, and IEEE Xplore) and Google search engines was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) extension for scoping reviews guidelines. Included records primarily focused on monitoring hitting load in racket sports using commercialized racket or arm-mounted inertial sensors through noncompetitive and competitive racket-sports players. Results: A total of 484 records were identified, and 19 finally met the inclusion criteria. The largest number of systems found were compatible with tennis (n = 11), followed by badminton (n = 4), table tennis (n = 2), padel (n = 1), and squash (n = 1). Four sensor locations were identified: grip-attached (n = 8), grip-embedded (n = 6), wrist (n = 3), and dampener sensors (n = 2). Among the tennis sensors, only 4 out of the 11 (36.4%) demonstrated excellent reliability (>.85) in monitoring the number of shots hit either during analytic drills or during simulated matches. None of the other racket-sports sensors have undergone successful, reliable validation for hitting-volume quantification. Conclusions: Despite recent advancements in this field, the quantification of hitting volume in racket sports remains a challenge, with only a limited number of tennis devices demonstrating reliable results. Thus, further progress in technology and research is essential to develop comprehensive solutions that adequately address these specific requirements.

Free access

The Limitations of Systematic Reviews With Meta-Analyses in Sport Science

Daniel Boullosa, David Behm, Sebastián Del Rosso, Moritz Schumann, Kenji Doma, and Carl Foster

Free access

Sport Science, Geopolitics, and How Each of Us Can Make a Difference

Jos J. de Koning, Carl Foster, David B. Pyne, Ralph Beneke, and Øyvind Sandbakk

Free access

Erratum. Absence of Monotony and Strain Effects on Referees’ Physical Performance During International Basketball Federation World Cup Basketball Competition

International Journal of Sports Physiology and Performance

Free access

Erratum. Addressing Circadian Disruptions in Visually Impaired Paralympic Athletes

International Journal of Sports Physiology and Performance

Free access

Strategies to Involve End Users in Sport-Science Research

Christopher J. Stevens and Christian Swann