You are looking at 131 - 140 of 4,610 items for :

  • Athletic Training, Therapy, and Rehabilitation x
  • Sport and Exercise Science/Kinesiology x
  • All content x
Clear All
Restricted access

Brian T. Tomblin, N. Stewart Pritchard, Tanner M. Filben, Logan E. Miller, Christopher M. Miles, Jillian E. Urban, and Joel D. Stitzel

The objective of this research was to characterize head impacts with a validated mouthpiece sensor in competitive youth female soccer players during a single season with a validated mouthpiece sensor. Participants included 14 youth female soccer athletes across 2 club-level teams at different age levels (team 1, ages 12–13 y; team 2, ages 14–15 y). Head impact and time-synchronized video data were collected for 66 practices and games. Video data were reviewed to characterize the type and frequency of contact experienced by each athlete. A total of 2216 contact scenarios were observed; heading the ball (n = 681, 30.7%) was most common. Other observed contact scenarios included collisions, dives, falls, and unintentional ball contact. Team 1 experienced a higher rate of headers per player per hour of play than team 2, while team 2 experienced a higher rate of collisions and dives. A total of 935 video-verified contact scenarios were concurrent with recorded head kinematics. While headers resulted in a maximum linear acceleration of 56.1g, the less frequent head-to-head collisions (n = 6) resulted in a maximum of 113.5g. The results of this study improve the understanding of head impact exposure in youth female soccer players and inform head impact exposure reduction in youth soccer.

Restricted access

Derrick D. Brown, Jurjen Bosga, and Ruud G.J. Meulenbroek

This study investigated effects of mirror and metronome use on spontaneous upper body movements by 10 preprofessional dancers in a motor task in which maximally diverse upper body movement patterns were targeted. Hand and trunk accelerations were digitally recorded utilizing accelerometers and analyzed using polar frequency distributions of the realized acceleration directions and sample entropy of the acceleration time. Acceleration directions were more variably used by the arms than by the torso, particularly so when participants monitored their performance via a mirror. Metronome use hardly affected the predictability of the acceleration time series. The findings underscore the intrinsic limitations that people experience when being asked to move randomly and reveal moderate effects of visual and acoustic constraints on doing so in dance.

Open access

Svend Erik Mathiassen

Restricted access

Guneet Chawla, Madelon Hoppe, Nina Browner, and Michael D. Lewek

The purpose of this study was to determine the difference in spatiotemporal gait measures induced by stepping to the beat of a metronome and to music cues of various frequencies in individuals with Parkinson’s disease. Twenty-one participants with Parkinson’s disease were instructed to time their steps to a metronome and music cues (at 85%, 100%, and 115% of overground cadence). The authors calculated cadence, cadence accuracy, and step length during each cue condition and an uncued control condition. The music and metronome cues produced comparable results in cadence manipulation, with reduced cadence accuracy noted at slower intended frequencies. Nevertheless, the induced cadence elicited a concomitant alteration in step length. The music and metronome cues produced comparable changes to gait, but suggest that temporal control is more limited at slower frequencies, presumably by the challenge of increasing the step length.

Restricted access

Taylor K. Dinyer, Pasquale J. Succi, M. Travis Byrd, Caleb C. Voskuil, Evangeline P. Soucie, and Haley C. Bergstrom

This study determined the load- and limb-dependent neuromuscular responses to fatiguing, bilateral, leg extension exercise performed at a moderate (50% one-repetition maximum [1RM]) and high load (80% 1RM). Twelve subjects completed 1RM testing for the bilateral leg extension, followed by repetitions to failure at 50% and 80% 1RM, on separate days. During all visits, the electromyographic (EMG) and mechanomyographic (MMG), amplitude (AMP) and mean power frequency (MPF) signals were recorded from the vastus lateralis of both limbs. There were no limb-dependent responses for any of the neuromuscular signals and no load-dependent responses for EMG AMP, MMG AMP, or MMG MPF (p = .301–.757), but there were main effects for time that indicated increases in EMG and MMG AMP and decreases in MMG MPF. There was a load-dependent decrease in EMG MPF over time (p = .032) that suggested variability in the mechanism responsible for metabolite accumulation at moderate versus high loads. These findings suggested that common drive from the central nervous system was used to modulate force during bilateral leg extension performed at moderate and high loads.

Restricted access

Liana M. Tennant, Erika Nelson-Wong, Joshua Kuest, Gabriel Lawrence, Kristen Levesque, David Owens, Jeremy Prisby, Sarah Spivey, Stephanie R. Albin, Kristen Jagger, Jeff M. Barrett, James D. Wong, and Jack P. Callaghan

Spinal stiffness and mobility assessments vary between clinical and research settings, potentially hindering the understanding and treatment of low back pain. A total of 71 healthy participants were evaluated using 2 clinical assessments (posteroanterior spring and passive intervertebral motion) and 2 quantitative measures: lumped mechanical stiffness of the lumbar spine and local tissue stiffness (lumbar erector spinae and supraspinous ligament) measured via myotonometry. The authors hypothesized that clinical, mechanical, and local tissue measures would be correlated, that clinical tests would not alter mechanical stiffness, and that males would demonstrate greater lumbar stiffness than females. Clinical, lumped mechanical, and tissue stiffness were not correlated; however, gradings from the posteroanterior spring and passive intervertebral motion tests were positively correlated with each other. Clinical assessments had no effect on lumped mechanical stiffness. The males had greater lumped mechanical and lumbar erector spinae stiffness compared with the females. The lack of correlation between clinical, tissue, and lumped mechanical measures of spinal stiffness indicates that the use of the term “stiffness” by clinicians may require reevaluation; clinicians should be confident that they are not altering mechanical stiffness of the spine through segmental mobility assessments; and greater resting lumbar erector stiffness in males suggests that sex should be considered in the assessment and treatment of the low back.

Restricted access

Behnam Gholami-Borujeni, Ali Yalfani, and Leila Ahmadnezhad

This study was conducted to evaluate the effects of 8-week inspiratory muscle training on activity in the ankle muscles of athletes with chronic low-back pain. A randomized controlled trial involving 45 men and women with chronic low-back pain was carried out. Electromyography activity in the tibialis anterior, peroneus longus, gastrocnemius medialis, and gastrocnemius lateralis muscles of the dominant leg was recorded. Secondary outcomes included biopsychosocial indices, such as pain, disability, anxiety and depression, fear-avoidance beliefs, and fear of (re)injury. Static and dynamic overhead squat tests showed that inspiratory muscle training decreased activity in the tibialis anterior, peroneus longus, and gastrocnemius medialis muscles. In the static single-leg squat test and the descending phase of the dynamic equivalent, such a decrease was observed in all the 4 muscles. Inspiratory muscle training significantly reduced pain severity and activity in the tibialis anterior, peroneus longus, and gastrocnemius medialis muscles during the ascending phase of the dynamic single-leg squat test. On the basis of the findings, 8 weeks of inspiratory muscle training may constitute useful rehabilitation for reducing excessive activity in ankle joint muscles and aiding chronic low-back pain recovery.

Restricted access

Rafael E.A. Muchaxo, Sonja de Groot, Lucas H.V. van der Woude, Thomas W.J. Janssen, and Carla Nooijen

The classification system for handcycling groups athletes into five hierarchical classes, based on how much their impairment affects performance. Athletes in class H5, with the least impairments, compete in a kneeling position, while athletes in classes H1 to H4 compete in a recumbent position. This study investigated the average time-trial velocity of athletes in different classes. A total of 1,807 results from 353 athletes who competed at 20 international competitions (2014–2018) were analyzed. Multilevel regression was performed to analyze differences in average velocities between adjacent pairs of classes, while correcting for gender, age, and event distance. The average velocity of adjacent classes was significantly different (p < .01), with higher classes being faster, except for H4 and H5. However, the effect size of the differences between H3 and H4 was smaller (d = 0.12). Hence, results indicated a need for research in evaluating and developing evidence-based classification in handcycling, yielding a class structure with meaningful performance differences between adjacent classes.

Full access

Nathan Waite, John Goetschius, and Jakob D. Lauver

Runners experience repeated impact forces during training, and the culmination of these forces can contribute to overuse injuries. The purpose of this study was to compare peak vertical tibial acceleration (TA) in trained distance runners on 3 surface types (grass, asphalt, and concrete) and 3 grades (incline, decline, and level). During visit 1, subjects completed a 1-mile time trial to determine their pace for all running trials: 80% (5%) of the average time trial velocity. During visit 2, subjects were outfitted with a skin-mounted accelerometer and performed 18 separate running trials during which peak TA was assessed during the stance phase. Each subject ran 2 trials for each condition with 2 minutes of rest between trials. Peak TA was different between decline (8.04 [0.12] g) and incline running (7.31 [0.35] g; P = .020). On the level grade, peak TA was greater during grass (8.22 [1.22] g) compared with concrete (7.47 [1.65] g; P = .017). On the incline grade, grass (7.68 [1.44] g) resulted in higher peak TA than asphalt (6.99 [1.69] g; P = .030). These results suggest that under certain grade conditions grass may result in higher TA compared with either concrete or asphalt.

Restricted access

Rena F. Hale, Sandor Dorgo, Roger V. Gonzalez, and Jerome Hausselle

Auditory feedback is a simple, low-cost training solution that can be used in rehabilitation, motor learning, and performance development. The use has been limited to the instruction of a single kinematic or kinetic target. The goal of this study was to determine if auditory feedback could be used to simultaneously train 2 lower-extremity parameters to perform a bodyweight back squat. A total of 42 healthy, young, recreationally active males participated in a 4-week training program to improve squat biomechanics. The Trained group (n = 22) received 4 weeks of auditory feedback. Feedback focused on knee flexion angle and center of pressure under the foot at maximum squat depth. The Control group (n = 20) performed squats without feedback. Subjects were tested pre, post, and 1 week after training. The Trained group achieved average target knee flexion angle within 1.73 (1.31) deg (P < .001) after training and 5.36 (3.29) deg (P < .01) at retention. While achieving target knee flexion angle, the Trained group maintained target center of pressure (P < .001). The Control group improved knee range of motion, but were not able to achieve both parameter targets at maximum squat depth (P < .90). Results from this study demonstrate that auditory feedback is an effective way to train 2 independent biomechanical targets simultaneously.