Browse

You are looking at 131 - 140 of 8,566 items for :

  • Physical Education and Coaching x
  • All content x
Clear All
Restricted access

Jamie Salter, Mark B.A. De Ste Croix, Jonathan D. Hughes, Matthew Weston, and Christopher Towlson

Purpose: Overuse injury risk increases during periods of accelerated growth, which can subsequently impact development in academy soccer, suggesting a need to quantify training exposure. Nonprescriptive development scheme legislation could lead to inconsistent approaches to monitoring maturity and training load. Therefore, this study aimed to communicate current practices of UK soccer academies toward biological maturity and training load. Methods: Forty-nine respondents completed an online survey representing support staff from male Premier League academies (n = 38) and female Regional Talent Clubs (n = 11). The survey included 16 questions covering maturity and training-load monitoring. Questions were multiple-choice or unipolar scaled (agreement 0–100) with a magnitude-based decision approach used for interpretation. Results: Injury prevention was deemed highest importance for maturity (83.0 [5.3], mean [SD]) and training-load monitoring (80.0 [2.8]). There were large differences in methods adopted for maturity estimation and moderate differences for training-load monitoring between academies. Predictions of maturity were deemed comparatively low in importance for bio-banded (biological classification) training (61.0 [3.3]) and low for bio-banded competition (56.0 [1.8]) across academies. Few respondents reported maturity (42%) and training load (16%) to parent/guardians, and only 9% of medical staff were routinely provided this data. Conclusions: Although consistencies between academies exist, disparities in monitoring approaches are likely reflective of environment-specific resource and logistical constraints. Designating consistent and qualified responsibility to staff will help promote fidelity, feedback, and transparency to advise stakeholders of maturity–load relationships. Practitioners should consider biological categorization to manage load prescription to promote maturity-appropriate dose–responses and to help reduce the risk of noncontact injury.

Restricted access

Miguel Sánchez-Moreno, Gonçalo Rendeiro-Pinho, Pedro V. Mil-Homens, and Fernando Pareja-Blanco

Purpose: This study aimed (1) to analyze the interindividual variability in the maximal number of repetitions (MNR) performed against a given relative load (percentage of 1-repetition maximum [%1RM]) and (2) to examine the relationship between the velocity loss (VL) magnitude and the percentage of completed repetitions with regard to the MNR (%Rep), when the %1RM is based on individual load–velocity relationships. Methods: Following an assessment of 1RM strength and individual load–velocity relationships, 14 resistance-trained men completed 5 MNR tests against loads of 50%, 60%, 70%, 80%, and 90% 1RM in the Smith machine bench-press exercise. The relative loads were determined from the individual load–velocity relationship. Results: Individual relationships between load and velocity displayed coefficients of determination (R 2) ranging from .986 to .998. The MNR showed an interindividual coefficient of variation ranging from 8.6% to 33.1%, increasing as the %1RM increased. The relationship between %Rep and the magnitude of VL showed a general R 2 of .92 to .94 between 50% and 80% 1RM, which decreased to .80 for 90% 1RM. The mean individual R 2 values were between .97 and .99 for all loading conditions. The %Rep when a given percentage of VL was reached showed interindividual coefficient of variation values ranging from 5% to 20%, decreasing as the %Rep increased in each load condition. Conclusions: Setting a number of repetitions had acceptable interindividual variability, with moderate relative loads being adjusted based on the individual load–velocity relationship. However, to provide a more homogeneous level of effort between athletes, the VL approach should be considered, mainly when using individual VL–%Rep relationships.

Restricted access

Federico Donghi, Ermanno Rampinini, Andrea Bosio, Maurizio Fanchini, Domenico Carlomagno, and Nicola A. Maffiuletti

Purpose: To compare the effects of different modalities of morning priming exercise on afternoon physical performance with the associated hormonal and psychophysiological responses in young soccer players. Methods: In a randomized counterbalanced crossover design, 12 young soccer players completed 3 different morning conditions on 3 different days: repeated-sprint running (6 × 40 m), easy exercise (4 × 12 fast half squats, 6 speed ladder drills, and 20-m sprints), and control (no exercise). Blood testosterone and cortisol concentrations were assessed upon arrival (approximately 8:30AM) and approximately 5 hours and 30 minutes later. Body temperature, self-reported mood, quadriceps neuromuscular function (maximal voluntary contraction, voluntary activation, rate of torque development, and twitch contractile properties), jump, and sprint performance were evaluated twice per day, while rating of perceived exertion, motivation, and the Yo-Yo Intermittent Recovery level 2 (IR2) tests were assessed once per day. Results: Compared with the control, repeated-sprint running induced a possible positive effect on testosterone (+11.6%) but a possible to very likely negative effect on twitch contractile properties (−13.0%), jump height (−1.4%), and Yo-Yo IR2 (−7.1%). On the other hand, easy exercise had an unclear effect on testosterone (−3.3%), resulted in lower self-reported fatigue (−31.0%) and cortisol (−12.9%), and had a possible positive effect on the rate of torque development (+4.3%) and Yo-Yo IR2 (+6.5%) compared with the control. Conclusions: Players’ testosterone levels were positively influenced by repeated-sprint running, but this did not translate into better physical function, as both muscular and endurance performance were reduced. Easy exercise seemed to be suitable to optimize the physical performance and psychophysiological state of young soccer players.

Restricted access

Flavio A. Cadegiani, Pedro Henrique L. Silva, Tatiana C.P. Abrao, and Claudio E. Kater

Purposes: Overtraining syndrome (OTS) is an unexplained underperformance syndrome triggered by excessive training, insufficient caloric intake, inadequate sleep, and excessive cognitive and social demands. Investigation of the recovery process from OTS has not been reported to date. The objective was to unveil novel markers and biochemical and clinical behaviors during the restoration process of OTS. Methods: This was a 12-week interventional protocol in 12 athletes affected by OTS, including increase of caloric intake, transitory interruption of training, improvement of sleep quality, and management of stress, followed by the assessment of 50 parameters including basal and hormonal responses to an insulin tolerance test and nonhormonal biochemical markers, and body metabolism and composition. Results: Early cortisol (P = .023), late ACTH (adrenocorticotrophic hormone) (P = .024), and early and late growth hormone (P = .005 and P = .038, respectively) responses, basal testosterone (P = .038), testosterone:estradiol ratio (P = .0005), insulinlike growth factor 1 (P = .004), cortisol awakening response (P = .001), and free thyronine (P = .069) increased, while basal estradiol (P = .033), nocturnal urinary catecholamines (P = .038), and creatine kinase (P = .071) reduced. Conversely, markers of body metabolism and composition had slight nonsignificant improvements. Conclusion: After a 12-week intervention, athletes affected by actual OTS disclosed a mix of non-, partial, and full recovery processes, demonstrating that remission of OTS is as complex as its occurrence.

Restricted access

Jaime Gil-Cabrera, Pedro L. Valenzuela, Lidia B. Alejo, Eduardo Talavera, Almudena Montalvo-Pérez, Alejandro Lucia, and David Barranco-Gil

Purpose: To compare the effectiveness of optimum power load training (OPT, training with an individualized load and repetitions that maximize power output) and traditional resistance training (TRT, same number of repetitions and relative load for all individuals) in professional cyclists. Methods: Participants (19 [1] y, peak oxygen uptake 75.5 [6] mL/kg/min) were randomly assigned to 8 weeks (2 sessions per week) of TRT (n = 11) or OPT (n = 9), during which they maintained their usual cycle training schedule. Training loads were continuously registered, and measures of muscle strength/power (1-repetition maximum and maximum mean propulsive power on the squat, hip thrust, and lunge exercises), body composition (assessed by dual-energy X-ray absorptiometry), and endurance performance (assessed on both an incremental test and an 8-min time trial) were collected before and at the end of the intervention. Results: OPT resulted in a lower average intensity (percentage of 1-repetition maximum) during resistance training sessions for all exercises (P < .01), but no differences were found for overall training loads during resistance or cycling sessions (P > .05). Both programs led to significant improvements in all strength/power-related parameters, muscle mass (with no changes in total body mass but a decreased fat mass), and time-trial performance (all Ps < .05). A trend toward increased power output at the respiratory compensation point was also found (P = .056 and .066 for TRT and OPT, respectively). No between-groups differences were noted for any outcome (P > .05). Conclusion: The addition of either TRT or OPT to an endurance training regimen of elite cyclists results in similar improvements of body composition, muscle strength/power, and endurance performance.

Restricted access

Kurt Jensen, Morten Frydkjær, Niels M.B. Jensen, Lucas M. Bannerholt, and Søren Gam

Purpose: To examine the relationship between the maximal power output (MPO) in an individualized 7 × 2-minute incremental (INCR) test, average power in a 2k (W2k) rowing ergometer test, and maximal oxygen uptake (V˙O2max) and to develop a regression equation to predict V˙O2max. Methods: A total of 34 male club rowers (age 18–30 y) performed a 2k and an INCR test in a Concept2 rowing ergometer to determine and compare MPO, W2k, and V˙O2max. Results: No significant difference was found between V˙O2max measured during INCR or 2k test (P = .73). A very high correlation coefficient (r = .96) was found between MPO and V˙O2max and between W2k and V˙O2max (r = .93). Linear regression analyses were developed for predicting V˙O2max from MPO: (1) V˙O2max (mL·min−1) = 11.49 × MPO + 810 and V˙O2max from W2k: (2) V˙O2max = 10.96 × W2k + 1168. Cross-validation analyses were performed using an independent sample of 14 rowers. There was no difference between the mean predicted V˙O2max in the INCR test (4.41 L·min−1) or the 2k test (4.39 L·min−1) and the observed V˙O2max (4.40 L·min−1). Technical error of measurement was 3.1% and 3.6%, standard error of estimate was 0.136 and 0.157 mL·min−1, and validation coefficients (r) were .95 and .94 using Equation () and (), respectively. Conclusion: A prediction model only including MPO or W2k explains 88% to 90% of the variability in V˙O2max and is suggested for practical use in male club rowers.

Restricted access

Mikayla J. Lyons, Jennifer Conlon, Amy Perejmibida, Paola Chivers, and Christopher Joyce

Purpose: This study examined the maintenance of passing performance following soccer-specific high-intensity intermittent exercise in elite (n = 9) and subelite (n = 11) Western Australian female soccer players (19.5 [2.5] y). Methods: A total of 20 participants completed the Loughborough Soccer Passing Test (LSPT) prior to, during, and following 90 minutes of a modified, female-specific, individualized exercise protocol (Loughborough Intermittent Shuttle Test [LIST]) to simulate 2 halves of a soccer match. Performance in the LSPT was calculated by adding “raw time” to the accumulated “penalty time” for each test. Results: Elite players recorded greater distances (t 58 = 4.671, P < .001, effect size [ES] = 1.21) and higher derived VO2max values (t 58 = 4.715, P < .001, ES = 1.20) for the LIST exercise protocol over the subelite players. The total performance times for each LSPT were longer in the subelites in comparison with the elites, with a very large ES difference seen in post-LIST1 (t 18 = −6.64, P < .001, ES = 2.99) and post-LIST2 (t 18 = −9.143, P < .001, ES = 4.12). No between-groups differences were identified for “raw time” at any time point. Hence, all reported LSPT performance differences are attributed to “penalty time.” Conclusion: These data suggest that elite players can sustain their passing performance more efficiently throughout match play that can subelite female soccer players. These findings may contribute to future talent-identification testing by helping to distinguish between elite- and subelite-level players through sustained passing performance. Coaches may also use this information to better inform best-practice training methods through modification of male soccer-specific high-intensity intermittent exercise to a female cohort.