Browse

You are looking at 21 - 30 of 4,612 items for :

  • Sport and Exercise Science/Kinesiology x
  • Athletic Training, Therapy, and Rehabilitation x
  • All content x
Clear All
Open access

Samar Ezzina, Clément Roume, Simon Pla, Hubert Blain, and Didier Delignières

The analysis of stride series revealed a loss of complexity in older people, which correlated with the falling propensity. A recent experiment evidenced an increase of walking complexity in older participants when they walked in close synchrony with a younger companion. Moreover, a prolonged experience of such synchronized walking yielded a persistent restoration of complexity. This result, however, was obtained with a unique healthy partner, and it could be related to a particular partner’s behavior. The authors’ aim was to replicate this important finding using a different healthy partner and to compare the results to those previously obtained. The authors successfully replicated the previous results: synchronization yielded an attraction of participants’ complexity toward that of their partner and a restoration of complexity that persisted in two posttests, 2 and 6 weeks after the end of the training sessions. This study shows that this complexity restoration protocol can be applied successfully with another partner, and allows us to conclude that it can be generalized.

Restricted access

J.D. DeFreese, Samuel R. Walton, Avinash Chandran, and Zachary Y. Kerr

The COVID-19 pandemic has resulted in changes to the structure of sport and the experiences of athletes. In this commentary, we consider how these changes, including schedule disruptions and the early termination of careers, have contributed to a reconsideration of how athlete transition should be defined, examined, and intervened upon. We outline our rationale for this proposed reconfiguration, including implications for researchers and practitioners working with athletes during the COVID-19 pandemic and beyond. For researchers, we recommend updating the transition definition, reconsidering the measurement of salient transition-related variables, and utilizing study designs/methods that best facilitate this work. For practitioners, we recommend considering the dynamic nature of transition within holistic athlete care, building momentum on mental health destigmatization achieved during the pandemic, athlete transition education, and clinician advocacy for transition-related resources for athletes. Ultimately, we hope this work will spark continued innovations in athlete transition research and practice moving forward.

Restricted access

Yetsa A. Tuakli-Wosornu, Xiang Li, Kimberly E. Ona Ayala, Yinfei Wu, Michael Amick, and David B. Frumberg

It is known that high-performance sprinters with unilateral and bilateral prosthetic lower limbs run at different speeds using different spatiotemporal strategies. Historically, these athletes still competed together in the same races, but 2018 classification rule revisions saw the separation of these two groups. This study sought to compare Paralympic sprint performance between all-comer (i.e., transfemoral and transtibial) unilateral and bilateral amputee sprinters using a large athlete sample. A retrospective analysis of race speed among Paralympic sprinters between 1996 and 2016 was conducted. In total, 584 published race results from 161 sprinters revealed that unilateral and bilateral lower-extremity amputee sprinters had significantly different race speeds in all three race finals (100 m, p value <.001; 200 m, <.001; 400 m, <.001). All-comer bilateral amputee runners ran faster than their unilateral counterparts; performance differences increased with race distance. These data support current classification criteria in amputee sprinting, which may create more equal competitive fields in the future.

Restricted access

Mu Qiao

Although the dynamics of center of mass can be accounted for by a spring-mass model during hopping, less is known about how each leg joint (ie, hip, knee, and ankle) contributes to center of mass dynamics. This work investigated the function of individual leg joints when hopping unilaterally and vertically at 4 frequencies (ie, 1.6, 2.0, 2.4, and 2.8 Hz). The hypotheses are (1) all leg joints maintain the function as torsional springs and increase their stiffness when hopping faster and (2) leg joints are controlled to maintain the mechanical load in the joints or vertical peak accelerations at different body locations when hopping at different frequencies. Results showed that all leg joints behaved as torsional springs during low-frequency hopping (ie, 1.6 Hz). As hopping frequency increased, leg joints changed their functions differently; that is, the hip and knee shifted to strut, and the ankle remained as spring. When hopping fast, the body’s total mechanical energy decreased, and the ankle increased the amount of energy storage and return from 50% to 62%. Leg joints did not maintain a constant load at the joints or vertical peak accelerations at different body locations when hopping at different frequencies.

Restricted access

Nathálya Gardênia de Holanda Marinho Nogueira, Bárbara de Paula Ferreira, Fernanda Veruska Narciso, Juliana Otoni Parma, Sara Edith Souza de Assis Leão, Guilherme Menezes Lage, and Lidiane Aparecida Fernandes

This study investigated the influence of chronotype on motor behavior in a manual dexterity task performed at different times of the day. Sixteen healthy adults of each chronotype (morning, evening, and neither), as measured by the Morningness–Eveningness Questionnaire, practiced both conditions of the Grooved Pegboard Test either in the morning or in the afternoon to early evening. The “neither” chronotype (65.12 ± 7.46) was outperformed (ps ≤ .03) by both the morning (56.09 ± 7.21) and evening (58.94 ± 7.53) chronotypes when the task had higher cognitive and motor demand but was not outperformed in the task with lower demand (morning = 18.46 ± 2.11; evening = 19.34 ± 2.79; neither = 21.47 ± 2.54; p > .05). No difference between the morning and evening chronotypes was found at the different times of the day (ps > .05), suggesting that a manual dexterity task is not sufficiently demanding to be influenced by chronotype.

Restricted access

Victoria Sanborn, Lauren Todd, Hanna Schmetzer, Nasha Manitkul-Davis, John Updegraff, and John Gunstad

Anxiety and depressive symptoms are prevalent in athletes. The pandemic of novel coronavirus (COVID-19) may increase risk for symptoms due to fear of exposure during competition or uncertainty regarding participation. The current study examined the prevalence of COVID-19 anxiety in 437 National Collegiate Athletic Association Division I student-athletes and its association with psychological symptoms. Only 0.2% of participants endorsed COVID-19 anxiety symptoms above cutoff. COVID-19 anxiety did not change after postponement of fall sports or differ between persons competing in different seasons. However, higher levels of COVID-19 anxiety were significantly associated with depression, anxiety, and stress. Though student-athletes generally reported low levels of psychological symptoms, females endorsed significantly higher levels than males. Low levels of COVID-19 anxiety in student-athletes may reflect protective factors (e.g., health knowledge, emotion regulation) or the tendency for this population to minimize psychological symptoms. Further investigations on the psychological impact of COVID-19 in athletes is needed.

Restricted access

Hillary H. Holmes, Randall T. Fawcett, and Jaimie A. Roper

Walking is an integral indicator of human health commonly investigated while walking overground and with the use of a treadmill. Unlike fixed-speed treadmills, overground walking is dependent on the preferred walking speed under the individuals’ control. Thus, user-driven treadmills may have the ability to better simulate the characteristics of overground walking. This pilot study is the first investigation to compare a user-driven treadmill, a fixed-speed treadmill, and overground walking to understand differences in variability and mean spatiotemporal measures across walking environments. Participants walked fastest overground compared to both fixed and user-driven treadmill conditions. However, gait cycle speed variability in the fixed-speed treadmill condition was significantly lower than the user-driven and overground conditions, with no significant differences present between overground and user-driven treadmill walking. The lack of differences in variability between the user-driven treadmill and overground walking may indicate that the user-driven treadmill can better simulate the variability of overground walking, potentially leading to more natural adaptation and motor control patterns of walking.

Restricted access

Lauren E. Schroeder, Rachel L. Tatarski, and Joshua T. Weinhandl

Decreased dorsiflexion range of motion (DROM) can be modified using static stretching and joint mobilizations and may attenuate known knee anterior cruciate ligament injury risk factors. It is not known how these interventions compare to each other and how they improve knee landing mechanics. This study’s purpose was to determine the immediate effects of static stretching and joint mobilization interventions on DROM measurement changes and right-leg drop jump knee landing mechanics. Eighteen females and 7 males, all recreationally active, completed 2 study sessions. Active and passive DROM, the weight-bearing lunge test, the anterior reach portion of the Star Excursion Balance Test, and a right-leg drop jump landing task were completed before and after the intervention. Change in DROM (ΔDROM) was calculated for DROM assessments between preintervention and postintervention. Pairwise dependent t tests determined no differences in ΔDROM between interventions, and statistical parametric mapping determined increased knee flexion (P = .004) and decreased anterior shear force (P = .015) during landing after both interventions. Increased DROM improves sagittal plane displacement and loading at the knee. Stretching may be a more feasible option in a healthy population for those wanting to maintain range of motion and decrease knee injury risk without physical therapist involvement.

Restricted access

Ahalee C. Farrow and Ty B. Palmer

This study aimed to examine the effects of age on hip flexion maximal and rapid strength and rectus femoris (RF) muscle size and composition in men. Fifteen young (25 [3] y) and 15 older (73 [4] y) men performed isometric hip flexion contractions to examine peak torque and absolute and normalized rate of torque development (RTD) at time intervals of 0 to 100 and 100 to 200 milliseconds. Ultrasonography was used to examine RF muscle cross-sectional area and echo intensity. Peak torque, absolute RTD at 0 to 100 milliseconds, and absolute and normalized RTD at 100 to 200 milliseconds were significantly lower (P = .004–.045) in the old compared with the young men. The older men exhibited lower cross-sectional area (P = .015) and higher echo intensity (P = .007) than the young men. Moreover, there were positive relationships between cross-sectional area and absolute RTD at 0 to 100 milliseconds (r = .400) and absolute RTD at 100 to 200 milliseconds (r = .450) and negative relationships between echo intensity and absolute RTD at 100 to 200 milliseconds (r = −.457) and normalized RTD at 100 to 200 milliseconds (r = −.373). These findings indicate that hip flexion maximal and rapid strength and RF muscle size and composition decrease in old age. The relationships observed between ultrasound-derived RF parameters and measurements of RTD suggest that these age-related declines in muscle size and composition may be relevant to hip flexion rapid torque production.

Open access

Tetsuo Fukunaga