Browse

You are looking at 41 - 50 of 4,594 items for :

  • Sport and Exercise Science/Kinesiology x
  • Athletic Training, Therapy, and Rehabilitation x
  • All content x
Clear All
Restricted access

Michael A. Hunt, Christopher K. Cochrane, Andrew M. Schmidt, Honglin Zhang, David J. Stockton, Alec H. Black, and David R. Wilson

Knee osteoarthritis is thought to result, in part, from excessive and unbalanced joint loading. Toe-in and toe-out gait modifications produce alterations in external knee joint moments, and some improvements in pain over the short- and long-term. The aim of this study was to probe mechanisms of altered joint loading through the assessment of tibiofemoral contact in standing with toe-in and toe-out positions using an open magnetic resonance scanner. In this study, 15 young, healthy participants underwent standing magnetic resonance imaging of one of their knees in 3 foot positions. Images were analyzed to determine contact in the tibiofemoral joint, with primary outcomes including centroid of contact and contact area for each compartment and overall. The centroid of contact shifted laterally in the lateral compartment with both toe-in and toe-out postures, compared with the neutral position (P < .01), while contact area in the medial and lateral compartments showed no statistical differences. Findings from this study indicate that changes in the loading anatomy are present in the tibiofemoral joint with toe-in and toe-out and that a small amount of lateralization of contact, especially in the lateral compartment, does occur with these altered lower limb orientations.

Restricted access

Daniel J. Davis and John H. Challis

Time-differentiating kinematic signals from optical motion capture amplifies the inherent noise content of those signals. Commonly, biomechanists address this problem by applying a Butterworth filter with the same cutoff frequency to all noisy displacement signals prior to differentiation. Nonstationary signals, those with time-varying frequency content, are widespread in biomechanics (eg, those containing an impact) and may necessitate a different filtering approach. A recently introduced signal filtering approach wherein signals are divided into sections based on their energy content and then Butterworth filtered with section-specific cutoff frequencies improved second derivative estimates in a nonstationary kinematic signal. Utilizing this signal-section filtering approach for estimating running vertical ground reaction forces saw more of the signal’s high-frequency content surrounding heel strike maintained without allowing inappropriate amounts of noise contamination in the remainder of the signal. Thus, this signal-section filtering approach resulted in superior estimates of vertical ground reaction forces compared with approaches that either used the same filter cutoff frequency across the entirety of each signal or across the entirety of all signals. Filtering kinematic signals using this signal-section filtering approach is useful in processing data from tasks containing an impact when accurate signal second derivative estimation is of interest.

Restricted access

Sarah Deck, Brianna DeSantis, Despina Kouali, and Craig Hall

In team sports, it has been found that team mistakes were reported as a stressor by both males and females, and at every playing level (e.g., club, university, national). The purpose of this study was to examine the impact of partners’ play on performance, emotions, and coping of doubles racquet sport athletes. Seventeen one-on-one semistructured interviews were conducted over the course of 6 months. Inductive and deductive analysis produced the main themes of overall impact on performance (i.e., positive, negative, or no impact), negative emotions (i.e., anger), positive emotions (i.e., excitement), emotion-focused coping (i.e., acceptance), and problem-focused coping (i.e., team strategy). These athletes acknowledge that how their partner plays significantly affects not only their emotions but also their own play and their choice of coping strategies. Future research should try to understand which forms of coping reduce the impact of partners’ play.

Restricted access

Shanie A.L. Jayasinghe, Rui Wang, Rani Gebara, Subir Biswas, and Rajiv Ranganathan

Impairment of arm movements poststroke often results in the use of compensatory trunk movements to complete motor tasks. These compensatory movements have been mostly observed in tightly controlled conditions, with very few studies examining them in more naturalistic settings. In this study, the authors quantified the presence of compensatory movements during a set of continuous reaching and manipulation tasks performed with both the paretic and nonparetic arm (in 9 chronic stroke survivors) or the dominant arm (in 20 neurologically unimpaired control participants). Kinematic data were collected using motion capture to assess trunk and elbow movement. The authors found that trunk displacement and rotation were significantly higher when using the paretic versus nonparetic arm (P = .03). In contrast, elbow angular displacement was significantly lower in the paretic versus nonparetic arm (P = .01). The reaching tasks required significantly higher trunk compensation and elbow movement than the manipulation tasks. These results reflect increased reliance on compensatory trunk movements poststroke, even in everyday functional tasks, which may be a target for home rehabilitation programs. This study provides a novel contribution to the rehabilitation literature by examining the presence of compensatory movements in naturalistic reaching and manipulation tasks.

Restricted access

Brendan L. Pinto, Daniel Viggiani, and Jack P. Callaghan

The lumbar extensor spinae (LES) has an oblique orientation with respect to the compressive axis of the lumbar spine, allowing it to counteract anterior shear forces. This mechanical advantage is lost as spine flexion angle increases. The LES orientation can also alter over time as obliquity decreases with age and is associated with decreased strength and low back pain. However, it is unknown if LES orientation is impacted by recent exposures causing adaptations over shorter timescales. Hence, the effects of a 10-minute sustained spine flexion exposure on LES orientation, thickness, and activity were investigated. Three different submaximally flexed spine postures were observed before and after the exposure. At baseline, orientation (P < .001) and thickness (P = .004) decreased with increasingly flexed postures. After the exposure, obliquity further decreased at low (pairwise comparison P < .001) and moderately (pairwise comparison P = .008) flexed postures. Low back creep occurred, but LES thickness did not change, indicating that decreases in orientation were not solely due to changes in muscle length at a given posture. Activation did not change to counteract decreases in obliquity. These changes encompass a reduced ability to offset anterior shear forces, thus increasing the potential risk of anterior shear-related injury or pain after low back creep-generating exposures.

Open access

Jack P. Callaghan

Restricted access

Ali Brian, Angela Starrett, Adam Pennell, Pamela Haibach-Beach, Emily Gilbert, Alexandra Stribing, Sally Taunton Miedema, and Lauren Lieberman

Youth with visual impairments are more likely to be overweight than peers without visual impairments and often struggle with their locomotor skills. Locomotor development can combat unhealthy body weight statuses by supporting physical activity behaviors. There are no longitudinal investigations concerning the locomotor skill and body mass index (BMI) developmental trajectories of youth with visual impairments. The purpose of this study was to examine the 3-year developmental trajectory of the locomotor skills and BMI of youth with visual impairments including differential effects of self-reported gender and degree of vision. Participants (N = 34, M age = 11.75 years, 47% female) showed severely delayed and arrested locomotor development with increases in BMI across 3 years regardless of self-reported gender or degree of vision. Participants failed to breech a proficiency barrier of motor competence to combat against increases in BMI across time. Additional longitudinal inquiries are needed.

Restricted access

Ryota Ashizawa, Kazuma Yamashita, Koki Take, Kengo Okawara, Eri Mochizuki, Asuka Sakamoto, and Yoshinobu Yoshimoto

The purpose of this single-masked randomized clinical trial was to examine whether nonleisure-time physical activity guidance (NLTPAG) improves physical activity levels in patients after minor ischemic stroke. Patients who had been hospitalized for minor ischemic stroke in an acute care hospital (National Health Institute Stroke Scale ≤ 5) were randomized to either an NLTPAG group (n = 17) or a leisure-time physical activity guidance group (n = 16). NLTPAG focused on reducing sedentary behavior and increasing the frequency of walking for shopping and household activities to improve physical activity levels in daily life. Physical activity levels significantly improved only in participants in the NLTPAG group (initial assessment: metabolic equivalents of task = 12.6; final assessment: metabolic equivalents of task = 14.8; p = .035, r = .51). These results suggest that NLTPAG may be effective for improving physical activity levels in patients after minor ischemic stroke.

Restricted access

T.N. Kirk, Justin A. Haegele, and Xihe Zhu

The purpose of this inquiry was to examine the relationship between barriers to physical activity, expectancy-value variables, and physical activity engagement among adults with visual impairments. Using a descriptive correlational approach, a sample of 214 adults with visual impairments (M age = 43.14, SD = 13.67) completed questionnaires pertaining to barriers to physical activity, expectancy-value beliefs about physical activity, and physical activity engagement. Data were analyzed via correlation and hierarchical regression. The final regression model explained 20.30% of variance in physical activity (p < .001). Intrinsic value (β = 0.26, p = .01) and expectancy beliefs (β = 0.33, p < .001) each emerged as significant predictors of physical activity engagement, which suggests that expectancy-value theory may have some utility for investigating the physical activity engagement of individuals with visual impairments. However, the lack of significant contribution of other variables such as attainment and utility values, as well as barriers factors, underscores the need for additional research in this area.