Browse

You are looking at 41 - 50 of 8,766 items for :

  • Physical Education and Coaching x
  • All content x
Clear All
Restricted access

Murray F. Mitchell, Sue Sutherland, and Jennifer Walton-Fisette

Neglecting to adapt physical education programs, or resisting and worse ignoring the changing needs of students has created an environment where the reproduction of inequities prevails. An examination of the role physical education teacher education faculty in the physical education system begins with consideration of eight key factors that influence their performance: (a) society, (b) higher education institutions, (c) PK–12 schools, (d) PK–12 and preservice student teachers (PST) students, (e) the purpose of physical education, (f) kinesiology, (g) professional associations, and (h) personal life circumstances. The authors draw attention to lessons learned and future directions tied to these eight influences. A critical reflection on social identity and how it influences practice is provided with suggestions on how to begin this work. Undertaking a program equity audit is discussed as a tool to highlight areas within physical education teacher education programs that influence socially just and equitable practice. Engaging in self-study (either individually, collaboratively, or programmatically) is suggested as a means to explore pedagogical practices or programmatic decisions that promote socially just and equitable physical education teacher education and physical education. Attention to policy engagement at the local, state, and national levels is noted as a potentially powerful contribution to change.

Open access

Naroa Etxebarria, Nicole A. Beard, Maree Gleeson, Alice Wallett, Warren A. McDonald, Kate L. Pumpa, and David B. Pyne

Gastrointestinal disturbances are one of the most common issues for endurance athletes during training and competition in the heat. The relationship between typical dietary intake or nutritional interventions and perturbations in or maintenance of gut integrity is unclear. Twelve well-trained male endurance athletes (peak oxygen consumption = 61.4 ± 7.0 ml·kg−1·min−1) completed two trials in a randomized order in 35 °C (heat) and 21 °C (thermoneutral) conditions and kept a detailed nutritional diary for eight consecutive days between the two trials. The treadmill running trials consisted of 15 min at 60% peak oxygen consumption, 15 min at 75% peak oxygen consumption, followed by 8 × 1-min high-intensity efforts. Venous blood samples were taken at the baseline, at the end of each of the three exercise stages, and 1 hr postexercise to measure gut integrity and the permeability biomarker concentration for intestinal fatty-acid-binding protein, lipopolysaccharide, and lipopolysaccharide-binding protein. The runners self-reported gut symptoms 1 hr postexercise and 3 days postexercise. The heat condition induced large (45–370%) increases in intestinal fatty-acid-binding protein, lipopolysaccharide-binding protein, and lipopolysaccharide concentrations compared with the baseline, but induced mild gastrointestinal symptoms. Carbohydrate and polyunsaturated fat intake 24 hr preexercise were associated with less lipopolysaccharide translocation. Protein, carbohydrate, total fat, and polyunsaturated fat intake (8 days) were positively associated with the percentage increase of intestinal fatty-acid-binding protein in both conditions (range of correlations, 95% confidence interval = .62–.93 [.02, .98]). Typical nutrition intake partly explained increases in biomarkers and the attenuation of symptoms induced by moderate- and high-intensity exercise under both heat and thermoneutral conditions.

Restricted access

Antonis Kesisoglou, Andrea Nicolò, Lucinda Howland, and Louis Passfield

Purpose: To examine the effect of continuous (CON) and intermittent (INT) running training sessions of different durations and intensities on subsequent performance and calculated training load (TL). Methods: Runners (N = 11) performed a 1500-m time trial as a baseline and after completing 4 different running training sessions. The training sessions were performed in a randomized order and were either maximal for 10 minutes (10CON and 10INT) or submaximal for 25 minutes (25CON and 25INT). An acute performance decrement (APD) was calculated as the percentage change in 1500-m time-trial speed measured after training compared with baseline. The pattern of APD response was compared with that for several TL metrics (bTRIMP, eTRIMP, iTRIMP, running training stress score, and session rating of perceived exertion) for the respective training sessions. Results: Average speed (P < .001, ηp2=.924) was different for each of the initial training sessions, which all resulted in a significant APD. This APD was similar when compared across the sessions except for a greater APD found after 10INT versus 25CON (P = .02). In contrast, most TL metrics were different and showed the opposite response to APD, being higher for CON versus INT and lower for 10- versus 25-minute sessions (P < .001, ηp2>.563). Conclusion: An APD was observed consistently after running training sessions, but it was not consistent with most of the calculated TL metrics. The lack of agreement found between APD and TL suggests that current methods for quantifying TL are flawed when used to compare CON and INT running training sessions of different durations and intensities.

Restricted access

Bjarne Rud, Eivind Øygard, Even B. Dahl, Gøran Paulsen, and Thomas Losnegard

Purpose: We tested whether a single session of heavy-load resistance priming conducted in the morning improved double-poling (DP) performance in the afternoon. Methods: Eight national-level male cross-country skiers (mean [SD]: 23 [3] y, 184 [6] cm, 73 [7] kg, maximum oxygen consumption = 69 [6] mL·kg−1·min−1) carried out 2 days of afternoon performance tests. In the morning, 5 hours before tests, subjects were counterbalanced to either a session of 3 × 3 repetitions (approximately 85%–90% 1-repetition maximum) of squat and sitting pullover exercises or no exercise. The performance was evaluated in DP as time to exhaustion (TTE) (approximately 3 min) on a treadmill and 30-m indoor sprints before and after TTE (30-m DP pre/post). Furthermore, submaximal DP oxygen cost, countermovement jump, and isometric knee-extension force during electrical stimulation were conducted. Participants reported perceived readiness on test days. Results: Resistance exercise session versus no exercise did not differ for TTE (approximately 3 min above) (mean ± 95% confidence interval = 3.6% ± 6.0%; P = .29; effect size [ES], Cohen d = 0.27), 30-m DP pre (−0.56% ± 0.80%; P = .21; ES = 0.20), 30-m DP post (−0.18% ± 1.13%; P = .76; ES = 0.03), countermovement jump (−2.0% ± 2.8%; P = .21; ES = 0.12), DP oxygen cost (−0.13% ± 2.04%; P = .91; ES = 0.02), or perceived readiness (P ≥ .11). Electrical stimulation force was not different in contraction or relaxation time but revealed low-frequency fatigue in the afternoon for the resistance exercise session only (−12% [7%]; P = .01; ES = 1.3). Conclusion: A single session of heavy-load, low-volume resistance exercise in the morning did not increase afternoon DP performance of short duration in high-level skiers. However, leg low-frequency fatigue after resistance priming, together with the presence of small positive effects in 2 out of 3 DP tests, may indicate that the preconditioning was too strenuous.

Open access

Megan A. Kuikman, Margo Mountjoy, Trent Stellingwerff, and Jamie F. Burr

Restricted access

Maria Misailidi, Konstantinos Mantzios, Christos Papakonstantinou, Leonidas G. Ioannou, and Andreas D. Flouris

Purpose: We investigated the environmental conditions in which all outdoor International Tennis Federation (ITF) junior tournaments (athlete ages: <18 y) were held during 2010–2019. Thereafter, we performed a crossover trial (ClinicalTrials.gov: NCT04197375) assessing the efficacy of head–neck precooling for mitigating the heat-induced psychophysical and performance impacts on junior athletes during tennis match play. Methods: ITF junior tournament information was collected. We identified meteorological data from nearby (13.6 [20.3] km) weather stations for 3056 (76%) tournaments. Results: Overall, 30.1% of tournaments were held in hot (25°C–30°C wet-bulb globe temperature [WBGT]; 25.9%), very hot (30°C–35°C WBGT; 4.1%), or extremely hot (>35°C WBGT; 0.1%) conditions. Thereafter, 8 acclimatized male junior tennis athletes (age = 16.0 [0.9] y; height = 1.82 [0.04] m; weight = 71.3 [11.1] kg) were evaluated during 2 matches: one with head–neck precooling (27.7°C [2.2°C] WBGT) and one without (27.9°C [1.8°C] WBGT). Head–neck precooling reduced athletes’ core temperature from 36.9°C (0.2°C) to 36.4°C (0.2°C) (P = .001; d = 2.4), an effect reduced by warm-up. Head–neck precooling reduced skin temperature (by 0.3°C [1.3°C]) for the majority of the match and led to improved (P < .05) perceived exertion (by 13%), thermal comfort (by 14%), and thermal sensation (by 15%). Muscle temperature, heart rate, body weight, and urine specific gravity remained unaffected (P ≥ .05; d < 0.2). Small or moderate improvements were observed in most performance parameters assessed (d = 0.20–0.79). Conclusions: Thirty percent of the last decade’s ITF junior tournaments were held in hot, very hot, or extremely hot conditions (25°C–36°C WBGT). In such conditions, head–neck precooling may somewhat lessen the physiological and perceptual heat strain and lead to small to moderate improvements in the match-play performance of adolescent athletes.

Restricted access

Charli Sargent, Michele Lastella, Shona L. Halson, and Gregory D. Roach

Purpose: Anecdotal reports indicate that many elite athletes are dissatisfied with their sleep, but little is known about their actual sleep requirements. Therefore, the aim of this study was to compare the self-assessed sleep need of elite athletes with an objective measure of their habitual sleep duration. Methods: Participants were 175 elite athletes (n = 30 females), age 22.2 (3.8) years (mean [SD]) from 12 individual and team sports. The athletes answered the question “how many hours of sleep do you need to feel rested?” and they kept a self-report sleep diary and wore a wrist activity monitor for ∼12 nights during a normal phase of training. For each athlete, a sleep deficit index was calculated by subtracting their average sleep duration from their self-assessed sleep need. Results: The athletes needed 8.3 (0.9) hours of sleep to feel rested, their average sleep duration was 6.7 (0.8) hours, and they had a sleep deficit index of 96.0 (60.6) minutes. Only 3% of athletes obtained enough sleep to satisfy their self-assessed sleep need, and 71% of athletes fell short by an hour or more. Specifically, habitual sleep duration was shorter in athletes from individual sports than in athletes from team sports (F 1,173 = 13.1, P < .001; d = 0.6, medium), despite their similar sleep need (F 1,173 = 1.40, P = .24; d = 0.2, small). Conclusions: The majority of elite athletes obtain substantially less than their self-assessed sleep need. This is a critical finding, given that insufficient sleep may compromise an athlete’s capacity to train effectively and/or compete optimally.

Restricted access

Alexandra Martin, Hande Hofmann, Clemens Drenowatz, Birgit Wallmann-Sperlich, Billy Sperlich, and Karsten Koehler

Energy availability describes the amount of dietary energy remaining for physiological functionality after the energy cost of exercise is deducted. The physiological and hormonal consequences of low energy availability (LEA) are well established, but the impact of LEA on physical activity behavior outside of exercise and, specifically, nonexercise activity thermogenesis (NEAT) has not been systematically examined. The authors conducted a secondary analysis of a repeated-measures crossover study in which recreationally trained young men (n = 6, 25 ± 1.0 years) underwent two 4-day conditions of LEA (15 kcal·kg fat-free mass−1 ·day−1) with and without endurance exercise (LEA + EX and LEA EX) and two energy-balanced control conditions (CON + EX and CON EX). The duration and intensity of physical activity outside of prescribed exercise were assessed using the SenseWear Pro3 armband. LEA did not alter NEAT (p = .41), nor time spent in moderate to vigorous (p = .20) and low-intensity physical activity (p = .17). However, time spent in low-intensity physical activity was lower in LEA + EX than LEA − EX (13.7 ± 0.3 vs. 15.2 ± 0.3 hr/day; p = .002). Short-term LEA does not seem to impact NEAT per se, but the way it is attained may impact physical activity behavior outside of exercise. As the participants expended similar amounts of energy during NEAT (900–1,300 kcal/day = 12.5–18.0 kcal·kg fat-free mass−1·day−1) and prescribed exercise bouts (15.0 kcal·kg fat-free mass−1·day−1), excluding it as a component of energy expenditure may skew the true energy available for physiological functionality in active populations.

Restricted access

Stephanie J. Shell, Brad Clark, James R. Broatch, Katie Slattery, Shona L. Halson, and Aaron J. Coutts

Purpose: This study aimed to independently validate a wearable inertial sensor designed to monitor training and performance metrics in swimmers. Methods: A total of 4 male (21 [4] y, 1 national and 3 international) and 6 female (22 [3] y, 1 national and 5 international) swimmers completed 15 training sessions in an outdoor 50-m pool. Swimmers were fitted with a wearable device (TritonWear, 9-axis inertial measurement unit with triaxial accelerometer, gyroscope, and magnetometer), placed under the swim cap on top of the occipital protuberance. Video footage was captured for each session to establish criterion values. Absolute error, standardized effect, and Pearson correlation coefficient were used to determine the validity of the wearable device against video footage for total swim distance, total stroke count, mean stroke count, and mean velocity. A Fisher exact test was used to analyze the accuracy of stroke-type identification. Results: Total swim distance was underestimated by the device relative to video analysis. Absolute error was consistently higher for total and mean stroke count, and mean velocity, relative to video analysis. Across all sessions, the device incorrectly detected total time spent in backstroke, breaststroke, butterfly, and freestyle by 51% (15%). The device did not detect time spent in drill. Intraclass correlation coefficient results demonstrated excellent intrarater reliability between repeated measures across all swimming metrics. Conclusions: The wearable device investigated in this study does not accurately measure distance, stroke count, and velocity swimming metrics or detect stroke type. Its use as a training monitoring tool in swimming is limited.