Context: Total Motion Release® (TMR®) is a novel treatment paradigm used to restore asymmetries in the body (eg, pain, tightness, limited range of motion). Six primary movements, known as the Fab 6, are performed by the patient and scored using a 0 to 100 scale. Clinicians currently utilize the TMR® scale to modify treatment, assess patient progress, and measure treatment effectiveness; however, the reliability of the TMR® scale has not been determined. It is imperative to assess scale reliability and establish minimal detectable change (MDC) values to guide clinical practice. Objective: To assess the reliability of the TMR® scale and establish MDC values for each motion in healthy individuals in a group setting. Design: Retrospective analysis of group TMR® assessments. Setting: University classroom. Participants: A convenience sample of 61 students (23 males and 38 females; 25.48 [5.73] y), with (n = 31) and without (n = 30) previous exposure to TMR®. Intervention: The TMR® Fab 6 movements were tested at 2 time points, 2 hours apart. A clinician with previous training in TMR® led participant groups through both sessions while participants recorded individual motion scores using the 0 to 100 TMR® scale. Test–retest reliability was calculated using an intraclass correlation coefficient (2,1) for inexperienced, experienced, and combined student groups. Standard error of measurement and MDC values were also assessed for each intraclass correlation coefficient. Outcome Measure: Self-reported scores on the TMR® scale. Results: Test–retest reliability ranged from 0.57 to 0.95 across the Fab 6 movements, standard error of measurement values ranged from 4.85 to 11.77, and MDC values ranged from 13.45 to 32.62. Conclusion: The results indicate moderate to excellent reliability across the Fab 6 movements and a range of MDC values. Although this study is the first step in assessing the reliability of the TMR® scale for clinical practice, caution is warranted until further research is completed to establish reliability and MDC values of the TMR® scale in various settings to better guide patient care.
Emilie N. Miley, Ashley J. Reeves, Madeline P. Casanova, Nickolai J.P. Martonick, Jayme Baker, and Russell T. Baker
Michelle Pannor Silver
Self-perceptions about aging have implications for health and well-being; however, less is known about how these perceptions influence adaptation to major life transitions. The goal of this study was to examine how high-performance athletes’ perceptions about aging influenced their adaptation to athletic retirement. In-depth interviews conducted with 24 retired Olympic athletes using thematic analysis yielded three key themes: (a) perceptions about aging influenced participants’ postretirement exercise habits, (b) perceptions about aging motivated participants to engage in civic activities, and (c) participants who lacked formative perceptions about aging associated their athletic retirement with their own lost sense of purpose. These findings provide evidence that perceptions about aging influence athletes’ adaptation to retirement by directing their subsequent engagement in postretirement activities. Furthermore, this research highlights theoretical implications for the literature regarding embodied processes, retirement transitions, role models, and adaptation to new physical states.
Vicky L. Goosey-Tolfrey, Sonja de Groot, Keith Tolfrey, and Tom A.W. Paulson
Purpose: To confirm whether peak aerobic capacity determined during laboratory testing could be replicated during an on-court field-based test in wheelchair rugby players. Methods: Sixteen wheelchair rugby players performed an incremental speed-based peak oxygen uptake (
Zeynep S. Akinci, Xavier Delclòs-Alió, Guillem Vich, and Carme Miralles-Guasch
This study explores how older adults’ time out-of-home and physical activity (PA) are associated with the provision of urban open spaces (green spaces, plazas, and boulevards) and microelements (street trees and benches) in their neighborhoods. The authors used data from 103 residents in Barcelona and matched it to official geospatial data. The authors adjusted a set of mixed-effects linear regressions, both for the entire sample and also stratified by age and gender. For the entire sample, the percentage of green spaces showed a positive association with neighborhood time out-of-home and PA, while participants’ PA also showed a positive association with the presence of benches. Outdoor time among older women was not associated with any of the measured exposures. For men, the provision of green spaces and benches was positively associated with time out-of-home and PA. These results could inform the design of urban spaces that aim to encourage outdoor activity among older adults.
Nick Draper, David Giles, Nicola Taylor, Laurent Vigouroux, Vanesa España-Romero, Jiří Baláš, Ignacio Solar Altamirano, Franziska Mally, Ina Beeretz, Jorge Couceiro Canalejo, Gabriel Josseron, Jan Kodejška, María José Arias Téllez, and German Gallo Cabeza de Vaca
Purpose: To examine the validity and reliability of a battery of 10 measures designed to assess the key physiological parameters for successful rock climbing performance. Methods: In phase 1 of the research, an expert panel, using the Delphi method, established a 10-item test battery based on the key determinants of climbing performance. In phase 2, the tests were assessed for validity and reliability to examine their suitability as sport-specific measures of rock climbing performance. A total of 132 rock climbers, from 7 countries, volunteered to take part in the study. Each climber visited their nearest laboratory on 3 separate occasions in order to enable the required tests and retests to be completed. A minimum of 7 days was allowed between visits. Results: The 10 tests established for phase 2 were designed as sport-specific measures of flexibility, strength, power, and endurance. Results indicated that, while reliable, the flexibility and strength tests were only partially successful in differentiating across climber abilities. The power and endurance tests, however, performed well with regard to validity and reliability, with the finger hang and powerslap tests being most strongly correlated with performance ability (P < .0005 to P < .002). Conclusion: The authors’ data suggest that climbing may require a threshold level of flexibility and strength for successful performance, beyond which further improvements may not be required. In contrast, the finger hang and powerslap tests were not only reliable measures but also differentiated between climber abilities from lower grade to elite levels.
Cindy Lee, Hyejin Bang, and David J. Shonk
As professional sport teams’ involvement with corporate social responsibility (CSR) activities are prevalent and expected by the public, there has been more attention on the factors that can influence consumers’ reactions to CSR activities. This study investigated the influence of two factors—corporate image and organization choice of communication vehicle—on individuals’ responses, perceived motive, and change of attitude to a professional team sports organization’s CSR activities. A total of 225 usable surveys were collected from a university located in the southern region of the United States for data analyses. The study showed that corporate image had a main effect on perceived motives, Munfavorable = 5.07, Mfavorable = 5.60, F(1, 216) = 6.38, p < .05,
David Giles, Cam Hartley, Hamish Maslen, Josh Hadley, Nicola Taylor, Ollie Torr, Joel Chidley, Tom Randall, and Simon Fryer
Purpose: The fatigue resistance of the finger flexors is known to be a key determinant of climbing performance. This study set out to establish the association between the single all-out assessment of finger flexor critical force (ff-CF) and the impulse above CF (W') on climbing performance (self-reported sport and boulder climbing ability). Methods: A total of 129 subjects completed an assessment of dominant arm ff-CF, comprised of a series of rhythmic isometric maximum voluntary contractions (CF defined as mean end-test force [in kilograms]; W' impulse above CF [in kilogram second]). Results: The ff-CF protocol resulted in the same force decay to a plateau seen in previous isometric critical torque and critical force tests. Linear regression analysis, adjusting for sex, revealed that CF percentage of body mass explained 61% of sport and 26% of bouldering performance and W' per kilogram body mass explained 7% sport and 34% bouldering performance. A combined model of CF as a percentage of body mass and W' per kilogram body mass, after adjustment for sex differences, was able to explain 66% of sport climbing and 44% of bouldering performance. Conclusions: The results illustrate the relevance of the CF threshold in describing the fatigue resistance of the finger flexors of rock climbers. Given ff-CF ability to describe a considerable proportion of variance in sport climbing and bouldering ability, the authors expect it to become a common test used by coaches for understanding exercise tolerance and for determining optimal training prescription.
Natthapon Traiperm, Rungchai Chaunchaiyakul, Martin Burtscher, and Hannes Gatterer
Purpose: Plasma N-terminal pro-B-type natriuretic peptide (NT-proBNP) and cardiac troponin T levels show a transient increase after marathon running. The aim of this study was to investigate whether running duration influences the patterns of changes in cardiac biomarkers. Methods: Twenty participants with fast and slow finishing times were included in the study. Blood samples were taken before the marathon race, immediately after, and 24 hours after the race. Samples were analyzed for NT-proBNP and cardiac troponin T concentration. Furthermore, a complete blood cell count was performed. Results: After the marathon race, the fast and slow runners showed similar changes of NT-proBNP and cardiac troponin T (ie, a transient increase). Curve estimation regression analysis showed a curvilinear relationship (quadratic model) between running times and NT-proBNP increments immediately after the race, with less of an increase in the very fast and the very slow runners (r2 = .359, P = .023). NT-proBNP increments immediately after the race were correlated to the decline 24 hours after the marathon (r = −.612, P = .004). Conclusions: This study indicates that NT-proBNP release immediately after marathon running varies in a curvilinear fashion with running time. It is speculated that low NT-proBNP release is associated with training adaptation in most elite runners and the relatively low cardiac stress in the slowest (but experienced) runners. The combination of less adaptation and relatively large cardiac wall and metabolic stress may explain the highest NT-proBNP values in runners with average running times. In addition, NT-proBNP decrements 24 hours after the race depend primarily on the values reached after the marathon and not on running time.
Lachlan P. James, Haresh Suppiah, Michael R. McGuigan, and David L. Carey
Purpose: Dozens of variables can be derived from the countermovement jump (CMJ). However, this does not guarantee an increase in useful information because many of the variables are highly correlated. Furthermore, practitioners should seek to find the simplest solution to performance testing and reporting challenges. The purpose of this investigation was to show how to apply dimensionality reduction to CMJ data with a view to offer practitioners solutions to aid applications in high-performance settings. Methods: The data were collected from 3 cohorts using 3 different devices. Dimensionality reduction was undertaken on the extracted variables by way of principal component analysis and maximum likelihood factor analysis. Results: Over 90% of the variance in each CMJ data set could be explained in 3 or 4 principal components. Similarly, 2 to 3 factors could successfully explain the CMJ. Conclusions: The application of dimensional reduction through principal component analysis and factor analysis allowed for the identification of key variables that strongly contributed to distinct aspects of jump performance. Practitioners and scientists can consider the information derived from these procedures in several ways to streamline the transfer of CMJ test information.
Gennaro Boccia, Marco Cardinale, and Paolo Riccardo Brustio
Purpose: This study investigated (1) the transition rate of elite world-class throwers, (2) the age of peak performance in either elite junior and/or elite senior athletes, and (3) if relative age effect (RAE) influences the chance of being considered elite in junior and/or senior category. Methods: The career performance trajectories of 5108 throwers (49.9% females) were extracted from the World Athletics database. The authors identified throwers who had reached the elite level (operationally defined as the World all-time top 50 ranked for each age category) in either junior and/or senior category and calculated the junior-to-senior transition rate. The age of peak performance and the RAE were also investigated. Results: The transition rate at 16 and 18 years of age was 6% and 12% in males and 16% and 24% in females, respectively. Furthermore, elite senior throwers reached their personal best later in life than elite junior throwers. The athletes of both genders considered elite in the junior category showed a large RAE. Interestingly, male athletes who reached the elite level in senior category also showed appreciable RAE. Conclusions: Only a few of the athletes who reach the top 50 in the world at 16 or 18 years of age manage to become elite senior athletes, underlining that success at the beginning of an athletic career does not predict success in the athlete’s senior career. Moreover, data suggest that being relatively older may confer a benefit across the whole career of male throwers.