Browse

You are looking at 61 - 70 of 4,576 items for :

  • Sport and Exercise Science/Kinesiology x
  • Athletic Training, Therapy, and Rehabilitation x
  • All content x
Clear All
Full access

Maëlle Tixier, Corinne Cian, Pierre-Alain Barraud, Rafael Laboissiere, and Stéphane Rousset

The aim of this experiment was to investigate the postural response to specific types of long-term memory (episodic vs. semantic) in young adults performing an unperturbed upright stance. Although a similar level of steadiness (mean distance) was observed, dual tasking induced a higher velocity, more energy in the higher frequency range (power spectral density), and less regularity (sample entropy) compared with a simple postural task. Moreover, mean velocity was always greater in the semantic than in the episodic task. The differences in postural control during dual tasking may result from the types of processes involved in the memory task. Findings suggest a spatial process sharing between posture and episodic memory.

Restricted access

Kaitlin M. Gallagher, Anita N. Vasavada, Leah Fischer, and Ethan C. Douglas

A popular posture for using wireless technology is reclined sitting, with the trunk rotated posteriorly to the hips. This position decreases the head’s gravitational moment; however, the head angle relative to the trunk is similar to that of upright sitting when using a tablet in the lap. This study compared cervical extensor musculotendon length changes from neutral among 3 common sitting postures and maximum neck flexion while using a tablet. Twenty-one participants had radiographs taken in neutral, full-flexion, and upright, semireclined, and reclined postures with a tablet in their lap. A biomechanical model was used to calculate subject-specific normalized musculotendon lengths for 27 cervical musculotendon segments. The lower cervical spine was more flexed during reclined sitting, but the skull was more flexed during upright sitting. Normalized musculotendon length increased in the reclined compared with an upright sitting position for the C4-C6/7 (deep) and C2-C6/7 (superficial) multifidi, semispinalis cervicis (C2-C7), and splenius capitis (Skull-C7). The suboccipital (R2 = .19–.71) and semispinalis capitis segment length changes were significantly correlated with the Skull-C1 angle (0.24–0.51). A semireclined reading position may be an ideal sitting posture to reduce the head’s gravitational moment arm without overstretching the assessed muscles.

Restricted access

Banu Unver, Kartal Selici, Eda Akbas, and Emin Ulas Erdem

The purpose of the study was to investigate the foot posture, ankle muscle strength, range of motion (ROM), and plantar sensation differences among normal weight, overweight, and obese individuals. One hundred and twenty-three individuals (42 normal weight, 40 overweight, and 41 obese) aged between 18 and 50 years participated in the study. Foot posture, ankle muscle strength, ROM, plantar sensation, and foot-related disabilities were evaluated. The relative muscle strength of left plantar flexors and invertors and light touch sensation of the left heel were significantly lower in obese individuals compared with overweight and normal weight (P < .016) individuals. Obese individuals had significantly reduced relative muscle strength of plantar flexors, dorsiflexor, and invertors, plantar flexion and inversion ROM in the left foot; and light touch sensation of the right heel compared with normal weight (P < .016) individuals. Foot Posture Index scores were significantly higher in obese individuals compared with overweight (P < .016) individuals. There were no significant differences in absolute muscle strength, vibration sensation, and foot-related disability scores among the 3 groups (P > .05). Obesity was found to have adverse effects on ankle muscle strength, ROM, and plantar light touch sensation. Vibration sensation was not affected by body mass index, and foot-related disability was not observed in obese adults.

Full access

Caleb D. Johnson and Irene S. Davis

Higher medial–lateral forces have been reported in individuals with stiffer foot arches. However, this was in a small sample of military personnel who ran with a rearfoot strike pattern. Therefore, our purpose was to investigate whether runners, both rearfoot and forefoot strikers, show different associations between medial–lateral forces and arch stiffness. A group of 118 runners (80 rearfoot strikers and 38 forefoot strikers) were recruited. Ground reaction force data were collected during running on an instrumented treadmill. Arch flexibility was assessed as the difference in arch height from sitting to standing positions, and participants were classified into stiff/flexible groups. Group comparisons were performed for the ratio of medial:vertical and lateral:vertical impulses. In rearfoot strikers, runners with stiff arches demonstrated significantly higher medial:vertical impulse ratios (P = .036). Forefoot strikers also demonstrated higher proportions of medial forces; however, the mean difference did not reach statistical significance (P = .084). No differences were detected in the proportion of lateral forces between arch flexibility groups. Consistent with previous findings in military personnel, our results indicate that recreational runners with stiffer arches have a higher proportion of medial forces. Therefore, increasing foot flexibility may increase the ability to attenuate medial forces.

Restricted access

Tyler N. Brown, AuraLea C. Fain, Kayla D. Seymore, and Nicholas J. Lobb

This study determined changes in lower limb joint stiffness when running with body-borne load, and whether they differ with stride or sex. Twenty males and 16 females had joint stiffness quantified when running (4.0 m/s) with body-borne load (20, 25, 30, and 35 kg) and 3 stride lengths (preferred or 15% longer and shorter). Lower limb joint stiffness, flexion range of motion (RoM), and peak flexion moment were submitted to a mixed-model analysis of variance. Knee and ankle stiffness increased 19% and 6% with load (P < .001, P = .049), but decreased 8% and 6% as stride lengthened (P = .004, P < .001). Decreased knee RoM (P < .001, 0.9°–2.7°) and increased knee (P = .007, up to 0.12 N.m/kg.m) and ankle (P = .013, up to 0.03 N.m/kg.m) flexion moment may stiffen joints with load. Greater knee (P < .001, 4.7°–5.4°) and ankle (P < .001, 2.6°–7.2°) flexion RoM may increase joint compliance with longer strides. Females exhibited 15% stiffer knee (P = .025) from larger reductions in knee RoM (4.3°–5.4°) with load than males (P < .004). Stiffer lower limb joints may elevate injury risk while running with load, especially for females.

Restricted access

Nicholas S. Ryan, Paul A. Bruno, and John M. Barden

Studies have investigated the reliability and effect of walking speed on stride time variability during walking trials performed on a treadmill. The objective of this study was to investigate the reliability of stride time variability and the effect of walking speed on stride time variability, during continuous, overground walking in healthy young adults. Participants completed: (1) 2 walking trials at their preferred walking speed on 1 day and another trial 2 to 4 days later and (2) 1 trial at their preferred walking speed, 1 trial approximately 20% to 25% faster than their preferred walking speed, and 1 trial approximately 20% to 25% slower than their preferred walking speed on a separate day. Data from a waist-mounted accelerometer were used to determine the consecutive stride times for each trial. The reliability of stride time variability outcomes was generally poor (intraclass correlations: .167–.487). Although some significant differences in stride time variability were found between the preferred walking speed, fast, and slow trials, individual between-trial differences were generally below the estimated minimum difference considered to be a real difference. The development of a protocol to improve the reliability of stride time variability outcomes during continuous, overground walking would be beneficial to improve their application in research and clinical settings.

Restricted access

Alejandro Pérez-Castilla, F. Javier Rojas, John F.T. Fernandes, Federico Gómez-Martínez, and Amador García-Ramos

This study examined the effect of different coaching conditions on the magnitude and reliability of drop jump height in men and women. Nineteen collegiate sport sciences students (10 men) performed two sets of 10 drop jumps under four different coaching conditions: neutral, augmented feedback, external focus of attention, and a combination of augmented feedback and external focus of attention. The augmented feedback condition revealed a significantly higher jump height than the neutral condition (p = .002), while no significant differences were observed for the remaining conditions (p ≥ .38). The external focus of attention condition was more reliable than the neutral and augmented feedback conditions (coefficient of variationratio ≥ 1.15), while no differences were observed between the remaining conditions. These results suggest that both the magnitude and reliability of the drop jump height performance are influenced by the coaching condition.

Restricted access

Marko Milic, Danica Janicijevic, Aleksandar Nedeljkovic, Ivan Cuk, Milos Mudric, and Amador García-Ramos

This study aimed to determine the instruction that maximizes fencing attack performance and to explore the sensitivity of a novel efficiency index (EI) that considers reaction time, attack velocity, and absolute error to discriminate between beginners and experienced fencers. Instructions that directed attentional focus internally (react as fast as possible and perform the attack movement as fast as possible) or externally (be as accurate as possible) were provided prior to stimulus presentation. The EI did not differ between the instructions in any group (p > .05), the instructions “react as fast as possible” and “be as accurate as possible” promoted in beginners the highest and the lowest EI, and the EI was higher for fencers. Our findings suggest that the EI could be recommended as a general index of fencing attack efficiency.