You are looking at 71 - 80 of 4,589 items for :

  • Sport and Exercise Science/Kinesiology x
  • Athletic Training, Therapy, and Rehabilitation x
  • All content x
Clear All
Restricted access

Matthew D. Bird, Eadie E. Simons, and Patricia C. Jackman

Mental toughness has been associated with factors related to psychological well-being, but little is known about its relationship with stigma toward mental health and mental health help-seeking. This study investigated the relationship between mental toughness, sport-related well-being, and personal stigma toward mental health in a sample of 154 National Collegiate Athletic Association Division I student-athletes. The moderating effect of mental toughness on the relationship between public stigma and self-stigma toward mental health help-seeking was also explored. Mental toughness was significantly and positively associated with sport-related well-being, but not significantly related to personal stigma toward mental health. Moderation analysis indicated that mental toughness was not a significant moderator of the relationship between public stigma and self-stigma, but higher levels of mental toughness were significantly associated with lower levels of stigma toward mental health help-seeking. Building mental toughness may be a way to increase well-being and to reduce stigma toward help-seeking in student-athletes.

Open access

Richard Tahtinen, Hafrun Kristjansdottir, Daniel T. Olason, and Robert Morris

The aim of the study was to explore the prevalence of specific symptoms of depression in athletes and to test differences in the likelihood of athletes exhibiting these symptoms across age, sex, type of team sport, and level of competition. A sample of Icelandic male and female team sport athletes (N = 894, 18–42 years) was included in the study. Of the athletes exhibiting clinically significant depressive symptoms on the Patient Health Questionnaire-9, 37.5% did not exhibit core symptoms of depression. Compared with males, females were significantly more likely to exhibit depressed mood, feelings of worthlessness/guilt, and problems with sleep, fatigue, appetite, and concentration. Within males, differences were mostly related to neurovegetative aspects of depression (sleep and appetite), whereas in females, differences were related to cognitive/emotional aspects (e.g., depressed mood, guilt/worthlessness). The findings underline the importance of exploring specific symptoms of depression to provide a richer understanding of depressive symptomology in athletes.

Restricted access

Davoud Fazeli, HamidReza Taheri, and Alireza Saberi Kakhki

The simulation theory argues that physical execution, action observation, and imagery share similar underlying mechanisms. Accordingly, applying a high-level psychological variable (variability of practice) should have a similar effect on all three modes. To test this theory, a total of 90 right-handed students participated in this study and were randomly divided into variable versus constant groups in three practice conditions, including physical, observational, and imagery. After a pretest (10 random trials of the putting task), the participants completed 50 practice trials. The groups performed/observed/imagined the task in the variable (different distances to different goals) or constant (fixed distance and goal) practice conditions. Also, there was an extra variable group in the physical and observational conditions, deprived of watching the feedback from the action. The participants completed a retention test 24 hr after the training. The effect of practice variability was observed in physical and observational conditions, but was not seen in the imagery condition. The no-feedback groups did not perform significantly differently from the imagery groups. The reason could be the lack of actual visual feedback during imagery.

Restricted access

Maëlle Tixier, Corinne Cian, Pierre-Alain Barraud, Rafael Laboissiere, and Stéphane Rousset

The aim of this experiment was to investigate the postural response to specific types of long-term memory (episodic vs. semantic) in young adults performing an unperturbed upright stance. Although a similar level of steadiness (mean distance) was observed, dual tasking induced a higher velocity, more energy in the higher frequency range (power spectral density), and less regularity (sample entropy) compared with a simple postural task. Moreover, mean velocity was always greater in the semantic than in the episodic task. The differences in postural control during dual tasking may result from the types of processes involved in the memory task. Findings suggest a spatial process sharing between posture and episodic memory.

Restricted access

Kaitlin M. Gallagher, Anita N. Vasavada, Leah Fischer, and Ethan C. Douglas

A popular posture for using wireless technology is reclined sitting, with the trunk rotated posteriorly to the hips. This position decreases the head’s gravitational moment; however, the head angle relative to the trunk is similar to that of upright sitting when using a tablet in the lap. This study compared cervical extensor musculotendon length changes from neutral among 3 common sitting postures and maximum neck flexion while using a tablet. Twenty-one participants had radiographs taken in neutral, full-flexion, and upright, semireclined, and reclined postures with a tablet in their lap. A biomechanical model was used to calculate subject-specific normalized musculotendon lengths for 27 cervical musculotendon segments. The lower cervical spine was more flexed during reclined sitting, but the skull was more flexed during upright sitting. Normalized musculotendon length increased in the reclined compared with an upright sitting position for the C4-C6/7 (deep) and C2-C6/7 (superficial) multifidi, semispinalis cervicis (C2-C7), and splenius capitis (Skull-C7). The suboccipital (R 2 = .19–.71) and semispinalis capitis segment length changes were significantly correlated with the Skull-C1 angle (0.24–0.51). A semireclined reading position may be an ideal sitting posture to reduce the head’s gravitational moment arm without overstretching the assessed muscles.

Restricted access

Banu Unver, Kartal Selici, Eda Akbas, and Emin Ulas Erdem

The purpose of the study was to investigate the foot posture, ankle muscle strength, range of motion (ROM), and plantar sensation differences among normal weight, overweight, and obese individuals. One hundred and twenty-three individuals (42 normal weight, 40 overweight, and 41 obese) aged between 18 and 50 years participated in the study. Foot posture, ankle muscle strength, ROM, plantar sensation, and foot-related disabilities were evaluated. The relative muscle strength of left plantar flexors and invertors and light touch sensation of the left heel were significantly lower in obese individuals compared with overweight and normal weight (P < .016) individuals. Obese individuals had significantly reduced relative muscle strength of plantar flexors, dorsiflexor, and invertors, plantar flexion and inversion ROM in the left foot; and light touch sensation of the right heel compared with normal weight (P < .016) individuals. Foot Posture Index scores were significantly higher in obese individuals compared with overweight (P < .016) individuals. There were no significant differences in absolute muscle strength, vibration sensation, and foot-related disability scores among the 3 groups (P > .05). Obesity was found to have adverse effects on ankle muscle strength, ROM, and plantar light touch sensation. Vibration sensation was not affected by body mass index, and foot-related disability was not observed in obese adults.

Restricted access

Caleb D. Johnson and Irene S. Davis

Higher medial–lateral forces have been reported in individuals with stiffer foot arches. However, this was in a small sample of military personnel who ran with a rearfoot strike pattern. Therefore, our purpose was to investigate whether runners, both rearfoot and forefoot strikers, show different associations between medial–lateral forces and arch stiffness. A group of 118 runners (80 rearfoot strikers and 38 forefoot strikers) were recruited. Ground reaction force data were collected during running on an instrumented treadmill. Arch flexibility was assessed as the difference in arch height from sitting to standing positions, and participants were classified into stiff/flexible groups. Group comparisons were performed for the ratio of medial:vertical and lateral:vertical impulses. In rearfoot strikers, runners with stiff arches demonstrated significantly higher medial:vertical impulse ratios (P = .036). Forefoot strikers also demonstrated higher proportions of medial forces; however, the mean difference did not reach statistical significance (P = .084). No differences were detected in the proportion of lateral forces between arch flexibility groups. Consistent with previous findings in military personnel, our results indicate that recreational runners with stiffer arches have a higher proportion of medial forces. Therefore, increasing foot flexibility may increase the ability to attenuate medial forces.

Restricted access

Tyler N. Brown, AuraLea C. Fain, Kayla D. Seymore, and Nicholas J. Lobb

This study determined changes in lower limb joint stiffness when running with body-borne load, and whether they differ with stride or sex. Twenty males and 16 females had joint stiffness quantified when running (4.0 m/s) with body-borne load (20, 25, 30, and 35 kg) and 3 stride lengths (preferred or 15% longer and shorter). Lower limb joint stiffness, flexion range of motion (RoM), and peak flexion moment were submitted to a mixed-model analysis of variance. Knee and ankle stiffness increased 19% and 6% with load (P < .001, P = .049), but decreased 8% and 6% as stride lengthened (P = .004, P < .001). Decreased knee RoM (P < .001, 0.9°–2.7°) and increased knee (P = .007, up to 0.12 N.m/kg.m) and ankle (P = .013, up to 0.03 N.m/kg.m) flexion moment may stiffen joints with load. Greater knee (P < .001, 4.7°–5.4°) and ankle (P < .001, 2.6°–7.2°) flexion RoM may increase joint compliance with longer strides. Females exhibited 15% stiffer knee (P = .025) from larger reductions in knee RoM (4.3°–5.4°) with load than males (P < .004). Stiffer lower limb joints may elevate injury risk while running with load, especially for females.