Browse

You are looking at 1 - 10 of 8,768 items for :

  • Athletic Training, Therapy, and Rehabilitation x
  • Refine by Access: All Content x
Clear All
Restricted access

Denys Batista Campos, Isabella Christina Ferreira, Matheus Almeida Souza, Macquiden Amorim Jr, Leonardo Intelangelo, Gabriela Silveira-Nunes, and Alexandre Carvalho Barbosa

Objective: To examine the selective influences of distinct acceleration profiles on the neuromuscular efficiency, force, and power during concentric and eccentric phases of isoinertial squatting exercise. Design: Cross-sectional study. Setting: Biomechanics laboratory of the university. Participants: A total of 38 active adults were divided according to their acceleration profiles: higher (n = 17; >2.5 m/s2) and lower acceleration group (n = 21; <2.5 m/s2). Intervention: All subjects performed squats until failure attached to an isoinertial conic pulley device monitored by surface electromyography of rectus femoris, vastus medialis, vastus lateralis, biceps femoris, and semitendinosus. Main Outcome Measures: An incremental optical encoder was used to assess maximal and mean power and force during concentric and eccentric phases. The neuromuscular efficiency was calculated using the mean force and the electromyographic linear envelope. Results: Between-group differences were observed for the maximal and mean force (P range = .001–.005), power (P = .001), and neuromuscular efficiency (P range = .001–.03) with higher significant values for the higher acceleration group in both concentric and eccentric phases. Conclusion: Distinct acceleration profiles affect the neuromuscular efficiency, force, and power during concentric and eccentric phases of isoinertial squatting exercise. To ensure immediate higher levels of power and force output without depriving the neuromuscular system, acceleration profiles higher than 2.5 m/s2 are preferable. The acceleration profiles could be an alternative to evolve the isoinertial exercise.

Restricted access

Kyung-eun Lee, Seung-min Baik, Chung-hwi Yi, Oh-yun Kwon, and Heon-seock Cynn

Context: Side bridge exercises strengthen the hip, trunk, and abdominal muscles and challenge the trunk muscles without the high lumbar compression associated with trunk extension or curls. Previous research using electromyography (EMG) reports that performance of the side bridge exercise highly activates the gluteus medius (Gmed). However, to the best of our knowledge, no previous research has investigated EMG amplitude in the hip and trunk muscles during side bridge exercise in subjects with Gmed weakness. Objective: The purpose of this study was to examine the EMG activity of the hip and trunk muscles during 3 variations of the side bridge exercise (side bridge, side bridge with knee flexion, and side bridge with knee flexion and hip abduction of the top leg) in subjects with Gmed weakness. Design: Repeated-measures experimental design. Setting: Research laboratory. Patients: Thirty subjects (15 females and 15 males) with Gmed weakness participated in this study. Intervention: Each subject performed 3 variations of the side bridge exercise in random order. Main Outcome Measures: Surface EMG was used to measure the muscle activities of the rectus abdominis, external oblique, longissimus thoracis, multifidus, Gmed, gluteus maximus, and tensor fasciae latae (TFL), and Gmed/TFL muscle activity ratio during 3 variations of the side bridge exercise. Results: There were significant differences in Gmed (F2,56 = 110.054, P < .001), gluteus maximus (F2,56 = 36.416, P < .001), and TFL (F2,56 = 108.342, P < .001) muscles among the 3 side bridge exercises. There were significant differences in the Gmed/TFL muscle ratio (F2,56 = 20.738, P < .001). Conclusion: Among 3 side bridge exercises, the side bridge with knee flexion may be effective for the individuals with Gmed weakness among 3 side bridge exercises to strengthen the gluteal muscles, considering the difficulty of the exercise and relative contribution of Gmed and TFL.

Full access

Bruno Augusto Lima Coelho, Helena Larissa das Neves Rodrigues, Gabriel Peixoto Leão Almeida, and Sílvia Maria Amado João

Context: Restriction in ankle dorsiflexion range of motion (ROM) has been previously associated with excessive dynamic knee valgus. This, in turn, has been correlated with knee pain in women with patellofemoral pain. Objectives: To investigate the immediate effect of 3 ankle mobilization techniques on dorsiflexion ROM, dynamic knee valgus, knee pain, and patient perceptions of improvement in women with patellofemoral pain and ankle dorsiflexion restriction. Design: Randomized controlled trial with 3 arms. Setting: Biomechanics laboratory. Participants: A total of 117 women with patellofemoral pain who display ankle dorsiflexion restriction were divided into 3 groups: ankle mobilization with anterior tibia glide (n = 39), ankle mobilization with posterior tibia glide (n = 39), and ankle mobilization with anterior and posterior tibia glide (n = 39). Intervention(s): The participants received a single session of ankle mobilization with movement technique. Main Outcome Measures: Dorsiflexion ROM (weight-bearing lunge test), dynamic knee valgus (frontal plane projection angle), knee pain (numeric pain rating scale), and patient perceptions of improvement (global perceived effect scale). The outcome measures were collected at the baseline, immediate postintervention (immediate reassessment), and 48 hours postintervention (48 h reassessment). Results: There were no significant differences between the 3 treatment groups regarding dorsiflexion ROM and patient perceptions of improvement. Compared with mobilization with anterior and posterior tibia glide, mobilization with anterior tibia glide promoted greater increase in dynamic knee valgus (P = .02) and greater knee pain reduction (P = .02) at immediate reassessment. Also compared with mobilization with anterior and posterior tibia glide, mobilization with posterior tibia glide promoted greater knee pain reduction (P < .01) at immediate reassessment. Conclusion: In our sample, the direction of the tibia glide in ankle mobilization accounted for significant changes only in dynamic knee valgus and knee pain in the immediate reassessment.

Restricted access

Arthur Alves Dos Santos, James Sorce, Alexandra Schonning, and Grant Bevill

This study evaluated the performance of 6 commercially available hard hat designs—differentiated by shell design, number of suspension points, and suspension tightening system—in regard to their ability to attenuate accelerations during vertical impacts to the head. Tests were conducted with impactor materials of steel, wood, and lead shot (resembling commonly seen materials in a construction site), weighing 1.8 and 3.6 kg and dropped from 1.83 m onto a Hybrid III head/neck assembly. All hard hats appreciably reduced head acceleration to the unprotected condition. However, neither the addition of extra suspension points nor variations in suspension tightening mechanism appreciably influenced performance. Therefore, these results indicate that additional features available in current hard hat designs do not improve protective capacity as related to head acceleration metrics.

Open access

John Kuzmeski, Gillian Weir, Travis Johnson, Matthew Salzano, and Joseph Hamill

This study investigated the differences between 5 commonly used methods to calculate leg stiffness over a range of running velocities. Thirteen male, habitually rearfoot, recreational runners ran on a force instrumented treadmill for a 5-minute running session. Each session consisted of 30-second intervals at 6 progressively faster speeds from 2.5 m·s−1 through 5.0 m·s−1 with each interval speed increasing by 0.5 m·s−1. Two-way within-factors repeated-measures analyses of variance were used to evaluate leg stiffness and length. A one-way repeated-measures analysis of variance was used to evaluate the slope of each trend line of each model across speeds. Pearson correlations were used to compare the relationship between the different computational methods. The results indicated that the direct stiffness methods increased with speed whereas the indirect stiffness methods did not. The direct methods were strongly correlated with each other as were the indirect methods. However, there were no strong correlations between the direct and indirect methods. These differences can be mostly attributed to how each individual stiffness method calculated leg length. It is important for researchers to understand these differences when conducting future studies and comparing past studies.

Restricted access

Hitoshi Oda, Yasushi Sawaguchi, Hiroshi Kunimura, Taku Kawasaki, and Koichi Hiraoka

This study examined whether the current movement follows the previous movement and whether this process is enhanced by somatosensory stimulation or is gated while retrieving and using the memory of the previously practiced target end point. Healthy humans abducted the index finger to a previously practiced target (target movement) or abducted it freely without aiming at the target (nontarget movement). The end point of the nontarget movement had a positive correlation with the previous nontarget movement only when somatosensory stimulation was given during the previous movement, indicating that the current nontarget movement follows the previous nontarget movement with somatosensory stimulation. No conclusive evidence of whether this process is gated by retrieving and using the memory of the previously practiced target was found.

Open access

Michal Vágner, Zdeněk Bílek, Karel Sýkora, Vladimír Michalička, Lubomír Přívětivý, Miloš Fiala, Adam Maszczyk, and Petr Stastny

The aim of this study was to find the effect of holographic sight (HS) on short-distance shooting accuracy and precision during static and high-intensity dynamic actions. Twenty policemen (31 ± 2.2 years, 85.6 ± 6.1 kg, and 181.9 ± 4.4 cm) performed five shots in the 10-s limit under the static condition for 20 m and dynamic condition 15–5 m, and after 4 × 10 m sprint action, both with fixed sight (FS) and HS. The analysis of variance post hoc test revealed that HSstatic had higher shouting accuracy than FSstatic, FSdynamic, and HSdynamic (p = .03, p = .0001, and p = .0001, respectively) and FSdynamic had lower precision than FSstatic, HSstatic, and HSdynamic (p = .0003, p = .0001, and p = .01, respectively) in vertical sway. The HS for rifles has improved the accuracy of static shooting and vertical sway precision of dynamic shooting.

Restricted access

David P. Schary and Carolina Lundqvist

In reaction to the COVID-19 pandemic, restrictive policies altered student-athletes’ academic and athletic life. Sparse research has investigated the pandemic’s effect on student-athlete mental health in terms of both negative (e.g., depression, anxiety) and positive (e.g., well-being, quality of life) dimensions. This study explored the effect of the COVID-19 pandemic on well-being and quality of life among National Collegiate Athletic Association Division I student-athletes at different stages of their collegiate career. Ninety-nine student-athletes (M age = 19.7 years, SD = 1.5) completed assessments on their mental health. Regression analysis revealed experiences directly related to COVID-19 did not affect general well-being or quality of life, but anxiety, depression, and significant insomnia did. Social well-being was lower for student-athletes closer to graduation (e.g., juniors, seniors), independent of reported anxiety and depression levels. These findings highlight the importance of psychosocial support, particularly in times of crisis, and indicate that tailored support might be beneficial at later stages of the collegiate years.

Restricted access

Mary D. Fry, Candace M. Hogue, Susumu Iwasaki, and Gloria B. Solomon

Psychological coping skills in sport are believed to be central to athlete performance and well-being. This study examined the relationship between the perceived motivational climate in elite collegiate sport teams and player psychological coping skills use. Division I athletes (N = 467) completed a questionnaire examining their perceptions of how caring, task-, and ego-involving their teams were and their use of sport specific psychological coping skills (i.e., coping with adversity, peaking under pressure, goal setting/mental preparation, concentration, freedom from worry, confidence/achievement motivation, and coachability). Structural equation modeling revealed positive relationships between perceptions of a task-involving climate and confidence/achievement motivation (β = 0.42) and goal setting/mental preparation (β = 0.27). Caring climate perceptions were positively associated with coachability (β = 0.34). These findings illustrate how encouraging athletes and coaches to create a caring, task-involving climate may facilitate athletes’ use of psychological coping skills and set athletes up to perform their best and have a positive sporting experience.