Browse

You are looking at 1 - 10 of 5,488 items for :

  • Sport and Exercise Science/Kinesiology x
  • Physical Education and Coaching x
  • Refine by Access: All Content x
Clear All
Open access

Alannah K.A. McKay, Peter Peeling, David B. Pyne, Nicolin Tee, Marijke Welveart, Ida A. Heikura, Avish P. Sharma, Jamie Whitfield, Megan L. Ross, Rachel P.L. van Swelm, Coby M. Laarakkers, and Louise M. Burke

This study implemented a 2-week high carbohydrate (CHO) diet intended to maximize CHO oxidation rates and examined the iron-regulatory response to a 26-km race walking effort. Twenty international-level, male race walkers were assigned to either a novel high CHO diet (MAX = 10 g/kg body mass CHO daily) inclusive of gut-training strategies, or a moderate CHO control diet (CON = 6 g/kg body mass CHO daily) for a 2-week training period. The athletes completed a 26-km race walking test protocol before and after the dietary intervention. Venous blood samples were collected pre-, post-, and 3 hr postexercise and measured for serum ferritin, interleukin-6, and hepcidin-25 concentrations. Similar decreases in serum ferritin (17–23%) occurred postintervention in MAX and CON. At the baseline, CON had a greater postexercise increase in interleukin-6 levels after 26 km of walking (20.1-fold, 95% CI [9.2, 35.7]) compared with MAX (10.2-fold, 95% CI [3.7, 18.7]). A similar finding was evident for hepcidin levels 3 hr postexercise (CON = 10.8-fold, 95% CI [4.8, 21.2]; MAX = 8.8-fold, 95% CI [3.9, 16.4]). Postintervention, there were no substantial differences in the interleukin-6 response (CON = 13.6-fold, 95% CI [9.2, 20.5]; MAX = 11.2-fold, 95% CI [6.5, 21.3]) or hepcidin levels (CON = 7.1-fold, 95% CI [2.1, 15.4]; MAX = 6.3-fold, 95% CI [1.8, 14.6]) between the dietary groups. Higher resting serum ferritin (p = .004) and hotter trial ambient temperatures (p = .014) were associated with greater hepcidin levels 3 hr postexercise. Very high CHO diets employed by endurance athletes to increase CHO oxidation have little impact on iron regulation in elite athletes. It appears that variations in serum ferritin concentration and ambient temperature, rather than dietary CHO, are associated with increased hepcidin concentrations 3 hr postexercise.

Open access
Restricted access

Alannah K.A. McKay, Rachel McCormick, Nicolin Tee, and Peter Peeling

This study determined the impact of heat stress on postexercise inflammation and hepcidin levels. Twelve moderately trained males completed three, 60-min treadmill running sessions under different conditions: (a) COOL, 18 °C with speed maintained at 80% maximum heart rate; (b) HOTHR, 35 °C with speed maintained at 80% maximum heart rate; and (c) HOTPACE, 35 °C completed at the average running speed from the COOL trial. Venous blood samples were collected pre-, post-, and 3-hr postexercise and analyzed for serum ferritin, interleukin-6 (IL-6), and hepcidin concentrations. Average HR was highest during HOTPACE compared with HOTHR and COOL (p < .001). Running speed was slowest in HOTHR compared with COOL and HOTPACE (p < .001). The postexercise increase in IL-6 was greatest during HOTPACE (295%; p = .003). No differences in the IL-6 response immediately postexercise between COOL (115%) and HOTHR (116%) were evident (p = .992). No differences in hepcidin concentrations between the three trials were evident at 3 hr postexercise (p = .407). Findings from this study suggest the IL-6 response to exercise is greatest in hot compared with cool conditions when the absolute running speed was matched. No differences in IL-6 between hot and cool conditions were evident when HR was matched, suggesting the increased physiological strain induced from training at higher intensities in hot environments, rather than the heat per se, is likely responsible for this elevated response. Environmental temperature had no impact on hepcidin levels, indicating that exercising in hot conditions is unlikely to further impact transient alterations in iron regulation, beyond that expected in temperate conditions.

Restricted access

Lara Lima Nabuco, Bryan Saunders, Renato André Sousa da Silva, Guilherme Eckhardt Molina, and Caio Eduardo Gonçalves Reis

This study investigated the effects of caffeine mouth rinse on cycling time to exhaustion (TTE) and physiological responses in trained cyclists. In a double-blinded randomized counterbalanced cross-over design, 10 recreationally trained male cyclists (mean ± SD: 32 ± 3 years, 72.8 ± 5.3 kg, 1.78 ± 0.06 m, 13.9% ± 3.3% body fat, peak power output = 289.4 ± 24.7 W) completed two TTE tests cycling at 75% of peak aerobic power following 24 hr of dietary and exercise standardization. Cyclists were administered 25-ml mouth rinses for 5 s containing either 85 mg of caffeine or control (water) every 5 min throughout the exercise tests. No significant improvement in TTE was shown with caffeine mouth rinse compared with control (33:24 ± 12:47 vs. 28:08 ± 10:18 min; Cohen’s dz effect size: 0.51, p = .14). Caffeine mouth rinse had no significant effect on ratings of perceived exertion (p = .31) or heart rate (p = .35) throughout the cycling TTE protocol. These data indicate that a repeated dose of caffeinated mouth rinse for 5 s does not improve cycling TTE in recreationally trained male cyclists. However, these findings should be taken with caution due to the small sample size and blinding ineffectiveness, while further well-design studies with larger samples are warranted.

Restricted access

Claudio Quagliarotti, Matteo Cortesi, Giorgio Gatta, Marco Bonifazi, Paola Zamparo, Roberto Baldassarre, Veronica Vleck, and Maria Francesca Piacentini

Purpose : Although wearing a wetsuit while swimming, when permitted, is primarily for safety reasons (ie, to protect against hypothermia), changes in buoyancy, biomechanics, and exercise performance have been reported. This narrative review covers the benefits of different wetsuit models on performance in swimming and triathlon. Methods : A computer search of online databases was conducted to locate relevant published research until March 2021. After the screening process, 17 studies were selected for analysis. Results : Most of the selected studies involved pool swimmers or triathletes completing short or middle distances in a pool while using a full or a long sleeveless wetsuit. Swimming with wetsuit elicited significant improvements in performance (maximum 11%), mainly by decreasing drag and energy cost, by increasing buoyancy, and by affecting technique. Different rates of change in each factor were found according to swimming ability and wetsuit model. In addition, wearing a wetsuit was often rated as uncomfortable by athletes. Conclusions : Although improvement in swimming performance by wearing a wetsuit has been reported in the literature, the amplitude of the improvement remains questionable. The enhancement in swimming performance is attributable merely to improvements in propulsion proficiency and buoyancy, as well as a reduction in drag. The extent to which athletes are familiar with the use of a wetsuit, their swimming ability, and the wetsuit model may play important roles in this improvement. More studies simulating competition and comparing elite versus nonelite athletes are needed.

Restricted access

Yasuki Sekiguchi, Courteney L. Benjamin, Samantha O. Dion, Ciara N. Manning, Jeb F. Struder, Erin E. Dierickx, Margaret C. Morrissey, Erica M. Filep, and Douglas J. Casa

The purpose of this study was to examine the effect of heat acclimation (HA) on thirst levels, sweat rate, and percentage of body mass loss (%BML), and changes in fluid intake factors throughout HA induction. Twenty-eight male endurance athletes (mean ± SD; age, 35 ± 12 years; body mass, 73.0 ± 8.9 kg; maximal oxygen consumption, 57.4 ± 6.8 ml·kg−1·min−1) completed 60 min of exercise in a euhydrated state at 58.9 ± 2.3% velocity of maximal oxygen consumption in the heat (ambient temperature, 35.0 ± 1.3 °C; relative humidity, 48.0 ± 1.3%) prior to and following HA where thirst levels, sweat rate, and %BML were measured. Then, participants performed 5 days of HA while held at hyperthermia (38.50–39.75 °C) for 60 min with fluid provided ad libitum. Sweat volume, %BML, thirst levels, and fluid intake were measured for each session. Thirst levels were significantly lower following HA (pre, 4 ± 1; post, 3 ± 1, p < .001). Sweat rate (pre, 1.76 ± 0.42 L/hr; post, 2.00 ± 0.60 L/hr, p = .039) and %BML (pre, 2.66 ± 0.53%; post, 2.98 ± 0.83%, p = .049) were significantly greater following HA. During HA, thirst levels decreased (Day 1, 4 ± 1; Day 2, 3 ± 2; Day 3, 3 ± 2; Day 4, 3 ± 1; Day 5, 3 ± 1; p < .001). However, sweat volume (Day 1, 2.34 ± 0.67 L; Day 2, 2.49 ± 0.58 L; Day 3, 2.67 ± 0.63 L; Day 4, 2.74 ± 0.61 L; Day 5, 2.74 ± 0.91 L; p = .010) and fluid intake (Day 1, 1.20 ± 0.45 L; Day 2, 1.52 ± 0.58 L; Day 3, 1.69 ± 0.63 L; Day 4, 1.65 ± 0.58 L; Day 5, 1.74 ± 0.51 L; p < .001) increased. In conclusion, thirst levels were lower following HA even though sweat rate and %BML were higher. Thirst levels decreased while sweat volume and fluid intake increased during HA induction. Thus, HA should be one of the factors to consider when planning hydration strategies.

Restricted access

Jeffrey J. Martin, Erin E. Snapp, E. Whitney G. Moore, Lauren J. Lieberman, Ellen Armstrong, and Staci Mannella

Youth with visual impairments (VIs) often experience unique barriers to physical activity compared with their sighted peers. A psychometrically sound scale for assessing barriers to physical activity for youth with VI is needed to facilitate research. The purpose of this study was to confirm the ability of the previously identified three-factor structure of the Physical Activity Barriers Questionnaire for youth with Visual Impairments (PABQ-VI) to produce scores considered to be valid and reliable that perform equally well across age, VI severity, and gender. Our results supported the three-factor structure and that the PABQ-VI produces scores considered valid and reliable. Mean, variance, and correlation differences were found in personal, social, and environmental barriers for age and VI severity, but not gender. Researchers can use the PABQ-VI to test and evaluate ways to reduce barriers for this population.

Restricted access

Antoine Raberin, Elie Nader, Jorge Lopez Ayerbe, Patrick Mucci, Vincent Pialoux, Henri Meric, Philippe Connes, and Fabienne Durand

This study aimed to investigate the changes in blood viscosity, pulmonary hemodynamics, nitric oxide (NO) production, and maximal oxygen uptake (V˙O2max) during a maximal incremental test conducted in normoxia and during exposure to moderate altitude (2,400 m) in athletes exhibiting exercise-induced hypoxemia at sea level (EIH). Nine endurance athletes with EIH and eight without EIH (NEIH) performed a maximal incremental test under three conditions: sea level, 1 day after arrival in hypoxia, and 5 days after arrival in hypoxia (H5) at 2,400 m. Gas exchange and oxygen peripheral saturation (SpO2) were continuously monitored. Cardiac output, pulmonary arterial pressure, and total pulmonary vascular resistance were assessed by echocardiography. Venous blood was sampled before and 3 min after exercise cessation to analyze blood viscosity and NO end-products. At sea level, athletes with EIH exhibited an increase in blood viscosity and NO levels during exercise while NEIH athletes showed no change. Pulmonary hemodynamics and aerobic performance were not different between the two groups. No between-group differences in blood viscosity, pulmonary hemodynamics, and V˙O2max were found at 1 day after arrival in hypoxia. At H5, lower total pulmonary vascular resistance and greater NO concentration were reported in response to exercise in EIH compared with NEIH athletes. EIH athletes had greater cardiac output and lower SpO2 at maximal exercise in H5, but no between-group differences occurred regarding blood viscosity and V˙O2max. The pulmonary vascular response observed at H5 in EIH athletes may be involved in the greater cardiac output of EIH group and counterbalanced the drop in SpO2 in order to achieve similar V˙O2max than NEIH athletes.