Browse

You are looking at 91 - 100 of 4,574 items for :

  • Sport and Exercise Science/Kinesiology x
  • Physical Education and Coaching x
Clear All
Restricted access

Sarah J. Willis, Grégoire P. Millet and Fabio Borrani

Purpose: To assess tissue oxygenation, along with metabolic and physiological responses during blood flow restriction (BFR, bilateral vascular occlusion) and systemic hypoxia conditions during submaximal leg- versus arm-cycling exercise. Methods: In both legs and arms, 4 randomized sessions were performed (normoxia 400 m, fraction of inspired oxygen [FIO2] 20.9% and normobaric hypoxia 3800 m, FIO2 13.1% [0.1%]; combined with BFR at 0% and 45% of resting pulse elimination pressure). During each session, a single 6-minute steady-state submaximal exercise was performed to measure physiological changes and oxygenation (near-infrared spectroscopy) of the muscle tissue in both the vastus lateralis (legs) and biceps brachii (arms). Results: Total hemoglobin concentration ([tHb]) was 65% higher (P < .001) in arms versus legs, suggesting that arms had a greater blood perfusion capacity than legs. Furthermore, there were greater changes in tissue blood volume [tHb] during BFR compared with control conditions (P = .017, F = 5.45). The arms elicited 7% lower tissue saturation (P < .001) and were thus more sensitive to the hypoxia-induced reduction in oxygen supply than legs, no matter the condition. This indicates that legs and arms may elicit different regulatory hemodynamic mechanisms (ie, greater blood flow in arms) for limiting the decreased oxygen delivery during exercise with altered arterial oxygen content. Conclusions: The combination of BFR and/or hypoxia led to increased [tHb] in both limbs likely due to greater vascular resistance; further, arms were more responsive than legs. This possibly influences the maintenance of oxygen delivery and enhances perfusion pressure, suggesting greater vascular reactivity in arms than in legs.

Restricted access

Paulo H.C. Mesquita, Emerson Franchini, Marco A. Romano-Silva, Guilherme M. Lage and Maicon R. Albuquerque

Purpose: To investigate the effects of anodal transcranial direct current stimulation (a-tDCS) on the aerobic performance, heart rate (HR), and rating of perceived exertion (RPE) of highly trained taekwondo athletes. Methods: Twelve (8 men and 4 women) international/national-level athletes received a-tDCS or sham treatment over the M1 location in a randomized, single-blind crossover design. The stimulation was delivered at 1.5 mA for 15 min using an extracephalic bihemispheric montage. Athletes performed the progressive-specific taekwondo test 10 min after stimulation. HR was monitored continuously during the test, and RPE was registered at the end of each stage and at test cessation. Results: There were no significant differences between sham and a-tDCS in time to exhaustion (14.6 and 14.9, respectively, P = .53, effect size = 0.15) and peak kicking frequency (52 and 53.6, respectively, P = .53, effect size = 0.15) or in HR (P > .05) and RPE responses (P > .05). Conclusions: Extracephalic bihemispheric a-tDCS over M1 did not influence the aerobic performance of taekwondo athletes or their psychophysiological responses, so athletes and staff should be cautious when using it in a direct-to-consumer manner.

Restricted access

Filipe M. Clemente, Ana F. Silva, Cain C.T. Clark, Daniele Conte, João Ribeiro, Bruno Mendes and Ricardo Lima

Purpose: The purposes of this study were to (1) analyze the variations of acute and chronic training load and well-being measures during 3 periods of the season (early, mid, and end) and (2) test the associations between weekly training load and well-being measures during different periods of the season. Methods: Thirteen professional volleyball players from a team competing in the Portuguese Volleyball First Division (age 31.0 [5.0] y) were monitored during an entire season. Weekly acute (wAL) and chronic load (wCL), acute to chronic workload ratio (wACWL), and training monotony (wTM) were calculated during all weeks of the season. The weekly values of muscle soreness (wDOMS), stress (wStress), fatigue (wFatigue), sleep (wSleep), and Hooper index (wHI) were also obtained across the season. Results: The midseason had meaningfully low values of wAL (−26.9%; effect size [ES]: −1.12) and wCL (−28.0%; ES: −2.81), and greater values of wACWL (+38.9%; ES: 2.81) compared with early season. The wCL (+10.6%; ES: 0.99), wStress (44.6%; ES: 0.87), and wHI (29.0%; ES: 0.62) were meaningfully greater during the end of season than in midseason. Overall, wAL presented very large correlations with wDOMS (r = .80), wSleep (r = .72), and wFatigue (r = .82). Conclusions: The results of this study suggest that the load was meaningfully higher during early season; however, stress was higher during the final stages of the season. Overall, it was also found that the acute load is more highly correlated with well-being status and its variations than chronic load or training monotony.

Restricted access

Daniel J. Peart, Michael Graham, Callum Blades and Ian H. Walshe

Purpose: To examine whether the use of a carbohydrate mouth rinse (CMR) can improve multiple choice reaction time in amateur boxers during sparring. Methods: A total of 8 male amateur boxers (age 22 [3] y, stature 1.78 [0.07] m, mass 73.6 [14.2] kg) with at least 18 months of experience in the sport volunteered to participate in the study. All participants attended a familiarization session, followed by an experimental (CMR; 6% dextrose) and placebo trials in a randomized order. Participants undertook 3 × 2 minutes of sparring against an ability- and size-matched (stature and mass) opponent. Multiple choice reaction time and perceived exertion were measured before round 1 and then after each round. The respective mouth rinse was administered in a 25-mL solution for 10 seconds before each round. Magnitude-based inferences were used to compare the results of each round (mean difference; ±90% confidence limits). Results: The CMR was unlikely to have a beneficial effect on multiple choice reaction time compared with placebo (mean ± 90% confidence limits: 5 ± 9.5, 4 ± 3.4, −1 ± 8.5 lights for rounds 1 to 3, respectively) and had a possibly harmful effect on perceived exertion in round 1 (10 ± 20). There was an unlikely harmful effect on perceived exertion in rounds 2 (1 ± 12) and 3 (9 ± 23). Conclusion: There is no evidence to support the use of CMR during sparring in amateur boxers.

Restricted access

Michele Lastella, Gregory D. Roach, Grace E. Vincent, Aaron T. Scanlan, Shona L. Halson and Charli Sargent

Purpose: To quantify the sleep/wake behaviors of adolescent, female basketball players and to examine the impact of daily training load on sleep/wake behaviors during a 14-day training camp. Methods: Elite, adolescent, female basketball players (N = 11) had their sleep/wake behaviors monitored using self-report sleep diaries and wrist-worn activity monitors during a 14-day training camp. Each day, players completed 1 to 5 training sessions (session duration: 114 [54] min). Training load was determined using the session rating of perceived exertion model in arbitrary units. Daily training loads were summated across sessions on each day and split into tertiles corresponding to low, moderate, and high training load categories, with rest days included as a separate category. Separate linear mixed models and effect size analyses were conducted to assess differences in sleep/wake behaviors among daily training load categories. Results: Sleep onset and offset times were delayed (P < .05) on rest days compared with training days. Time in bed and total sleep time were longer (P < .05) on rest days compared with training days. Players did not obtain the recommended 8 to 10 hours of sleep per night on training days. A moderate increase in sleep efficiency was evident during days with high training loads compared with low. Conclusions: Elite, adolescent, female basketball players did not consistently meet the sleep duration recommendations of 8 to 10 hours per night during a 14-day training camp. Rest days delayed sleep onset and offset times, resulting in longer sleep durations compared with training days. Sleep/wake behaviors were not impacted by variations in the training load administered to players.

Restricted access

Nicola Giovanelli, Lea Biasutti, Desy Salvadego, Hailu K. Alemayehu, Bruno Grassi and Stefano Lazzer

Purpose: To evaluate the effects of a trail-running race on muscle oxidative function by measuring pulmonary gas exchange variables and muscle fractional O2 extraction. Methods: Eighteen athletes were evaluated before (PRE) and after (POST) a trail-running competition of 32 or 50 km with 2000 or 3500 m of elevation gain, respectively. During the week before the race, runners performed an incremental uphill running test and an incremental exercise by utilizing a 1-leg knee extension ergometer. The knee extension exercise was repeated after the end of the race. During the knee extension test, the authors measured oxygen uptake (V˙O2) and micromolar changes in deoxygenated hemoglobin (Hb)+myoglobin (Mb) concentrations (Δ[deoxy(Hb+Mb)]) on vastus lateralis with a portable near-infrared spectroscopy. Results: V˙O2peak was lower at POST versus PRE (−23.9% [9.0%]; P < .001). V˙O2peak at POST was lower than V˙O2 at the same workload at PRE (−8.4% [15.6%]; P < .050). Peak power output and time to exhaustion decreased at POST by −23.7% (14.3%) and −18.3% (11.3%), respectively (P < .005). At POST, the increase of Δ[deoxy(Hb+Mb)] as a function of work rate, from unloaded to peak, was less pronounced (from 20.2% [10.1%] to 64.5% [21.1%] of limb ischemia at PRE to 16.9% [12.7%] to 44.0% [18.9%] at POST). Peak Δ[deoxy(Hb+Mb)] values were lower at POST (by −31.2% [20.5%]; P < .001). Conclusions: Trail running leads to impairment in skeletal muscle oxidative metabolism, possibly related to muscle damage from repeated eccentric contractions. In association with other mechanisms, the impairment of skeletal muscle oxidative metabolism is likely responsible for the reduced exercise capacity and tolerance during and following these races.

Restricted access

Michal Wilk, Michal Krzysztofik, Milosz Drozd and Adam Zajac

Purpose: Resistance training is one of the key components influencing power output. Previous studies directed at power development through the use of postactivation potentiation have analyzed resistance exercises at volitional or fast tempo of movement in the entire cycle, without control of the duration of the concentric and eccentric phases of movement. To date, no scientific studies have explored the effects of varied movement tempo on the level of power output, velocity, and postactivation potentiation efficiency. Methods: During the experimental sessions, study participants performed 3 sets (Sets1–3) of the bench-press exercise using 70% 1-repetition maximum and 2 different tempos of movement: 2/0/X/0 eccentric medium tempo (ECCMED) and 6/0/X/0 eccentric slow tempo (ECCSLO). Results: Post hoc analysis demonstrated significant differences in values of peak (P PEAK) and mean (P MEAN) power between Sets1–3 measured for the ECCMED (2/0/X/0) tempo. The values of P MEAN in Set3 (492.15 [87.61] W) were significantly higher than in Set2 (480.05 [82.10] W) and Set1 (467.65 [79.18] W). Similarly, the results of P PEAK in Set3 (713.10 [132.72] W) were significantly higher than those obtained in Set2 (702.25 [129.5] W) and Set1 (671.55 [115.79] W). For the ECCSLO tempo (6/0/X/0) in Set2 (587.9 [138.48] W), the results of P PEAK were significantly higher than in Set1 (565.7 [117.37] W) and Set3 (563.1 [124.93] W). Conclusions: The results of this study indicate that the postactivation potentiation effect is observed for both slow and medium tempos of movement.

Restricted access

Marco Beato, Stuart A. McErlain-Naylor, Israel Halperin and Antonio Dello Iacono

Purpose: To summarize the evidence on postactivation potentiation (PAP) protocols using flywheel eccentric overload (EOL) exercises. Methods: Studies were searched using the electronic databases PubMed, Scopus, and Institute for Scientific Information Web of Knowledge. Results: In total, 7 eligible studies were identified based on the following results: First, practitioners can use different inertia intensities (eg, 0.03–0.11 kg·m2), based on the exercise selected, to enhance sport-specific performance. Second, the PAP time window following EOL exercise seems to be consistent with traditional PAP literature, where acute fatigue is dominant in the early part of the recovery period (eg, 30 s), and PAP is dominant in the second part (eg, 3 and 6 min). Third, as EOL exercises require large force and power outputs, a volume of 3 sets with the conditioning activity (eg, half-squat or lunge) seems to be a sensible approach. This could reduce the transitory muscle fatigue and thereby allow for a stronger potentiation effect compared with larger exercise volumes. Fourth, athletes should gain experience by performing EOL exercises before using the tool as part of a PAP protocol (3 or 4 sessions of familiarization). Finally, the dimensions of common flywheel devices offer useful and practical solutions to induce PAP effects outside of normal training environments and prior to competitions. Conclusions: EOL exercise can be used to stimulate PAP responses to obtain performance advantages in various sports. However, future research is needed to determine which EOL exercise modalities among intensity, volume, and rest intervals optimally induce the PAP phenomenon and facilitate transfer effects on athletic performances.

Restricted access

Olfa Turki, Wissem Dhahbi, Sabri Gueid, Sami Hmaied, Marouen Souaifi and Riadh Khalifa

Purpose: To explore the effect of 4 different warm-up strategies using weighted vests and to determine the specific optimal recovery duration required to optimize the repeated change-of-direction (RCOD) performance in young soccer players. Methods: A total of 19 male soccer players (age 18 [0.88] y, body mass 69.85 [7.68] kg, body height 1.75 [0.07] m, body mass index 22.87 [2.23] kg·m−2, and body fat percentage 12.53% [2.59%]) completed the following loaded warm-up protocols in a randomized, counterbalanced cross-over, within-participants order and on separate days: weighted vest with a loading of 5% (WUV5%), 10% (WUV10%), 15% (WUV15%) body mass, and an unloaded condition (control). RCOD performance (total time, peak time, and fatigue index) was collected during the preintervention phase (5 min after the dynamic stretching sequence) for baseline values and immediately (at 15 min), at 4- and 8-minute postwarm-up intervention. Results: For each postwarm-up tested, recovery times (ie, 15 s, 4 min, and 8 min), of both total and peak times were faster following WUV5%, WUV10%, and WUV15%, compared with the unloaded condition (P ≤.001–.031, d = 1.28–2.31 [large]). There were no significant differences (P = .09–1.00, d = 0.03–0.72 [trivial–moderate]) in-between recovery times in both total and peak times following WUV5%, WUV10%, and WUV15%. However, baseline fatigue index score was significantly worse than all other scores (P ≤.001–.002, d = 1.35–2.46 [large]) following the loaded conditions. Conclusions: The findings demonstrated that a dynamic loaded warm-up increases an athlete’s initial RCOD performance up to the 8-minute postwarm-up intervention. Therefore, strength coaches need to consider using weighted vests during the warm-up for trained athletes in order to acutely optimize RCODs.

Restricted access

Pablo Jodra, Raúl Domínguez, Antonio J. Sánchez-Oliver, Pablo Veiga-Herreros and Stephen J. Bailey

Purpose: Dietary supplementation with inorganic nitrate (NO3 ) can enhance high-intensity exercise performance by improving skeletal muscle contractility and metabolism, but the extent to which this might be linked to altered psychophysiological processes is presently unclear. The purpose of this study was to assess the effects of NO3 -rich beetroot juice (BJ) supplementation on profile of mood states, ratings of perceived exertion (RPE), and performance in a 30-second Wingate cycle test. Methods: In a double-blind, randomized, cross-over study, 15 subjects completed 2 laboratory sessions after ingesting NO3 -rich or NO3 -depleted (placebo) BJ. Participants initially completed the profile of mood states questionnaire. Subsequently, participants completed a warm-up followed by a 30-second all-out Wingate cycling test. After the Wingate test, participants immediately indicated the RPE of their leg muscles (RPEmuscular), cardiovascular system (RPEcardio), and general RPE (RPEgeneral). Results: Compared with the placebo condition, supplementation with BJ increased peak power output (W peak) (+4.4%, 11.5 [0.7] vs 11.1 [1.0] W·kg−1; P = .039) and lowered the time taken to reach W peak (7.3 [0.9] vs 8.7 [1.5] s; P = .002) during the Wingate test. The profile of mood states score linked to tension was increased prior to the Wingate test (4.8 [3.0] vs 3.4 [2.4]; P = .040), and RPEmuscular was lowered immediately following the Wingate test (17.7 [1.6] vs 18.3 [1.0]; P = .031), after BJ compared with placebo ingestion. Conclusions: Acute BJ supplementation improved pre-exercise tension, 30-second Wingate test performance, and lowered postexercise RPEmuscular.