You are looking at 101 - 110 of 4,483 items for :

  • Sport and Exercise Science/Kinesiology x
  • Physical Education and Coaching x
Clear All
Restricted access

Bent R. Rønnestad, Tue Rømer and Joar Hansen

Purpose: Accumulated time at a high percentage of peak oxygen consumption (VO2peak) is important for improving performance in endurance athletes. The present study compared the acute effect of a roller-ski skating session containing work intervals with a fast start followed by decreasing speed (DEC) with a traditional session where the work intervals had a constant speed (similar to the mean speed of DEC; TRAD) on physiological responses, rating of perceived exertion, and leg press peak power. Methods: A total of 11 well-trained cross-country skiers performed DEC and TRAD in a randomized order (5 × 5-min work intervals, 3-min relief). Each 5-minute work interval in the DEC protocol started with 1.5 minutes at 100% of maximal aerobic speed followed by 3.5 minutes at 85% of maximal aerobic speed, whereas the TRAD protocol had a constant speed at 90% of maximal aerobic speed. Results: DEC induced a higher VO2 than TRAD, measured as both peak and average of all work intervals during the session (98.2% [2.1%] vs 95.4% [3.1%] VO2peak, respectively, and 87.6% [1.9%] vs 86.1% [3.2%] VO2peak, respectively) with a lower mean rating of perceived exertion after DEC than TRAD (16.1 [1.0] vs 16.5 [0.7], respectively) (all P < .05). There were no differences between sessions for mean heart rate, blood lactate concentration, or leg press peak power. Conclusion: DEC induced a higher mean VO2 and a lower rating of perceived exertion than TRAD, despite similar mean speed, indicating that DEC can be a good strategy for interval sessions aiming to accumulate more time at a high percentage of VO2peak.

Restricted access

Ryo Yamanaka, Hayato Ohnuma, Ryosuke Ando, Fumiya Tanji, Toshiyuki Ohya, Masahiro Hagiwara and Yasuhiro Suzuki

Purpose: Increases in maximal oxygen uptake (V˙O2max) and running economy improve performance in long-distance runners. Nevertheless, long-distance runners require sprinting ability to win, especially in the final phase of competitions. The authors determined the relationships between performance and sprinting ability, as well as other abilities in elite long-distance runners. Methods: The subjects were 12 elite long-distance runners. Mean official seasonal best times in 5000-m (5000 m-SB) and 10,000-m (10,000 m-SB) races within 1 year before or after the examination were 13:58.5 (0:18.7) and 28:37.9 (0:25.2) (mean [SD]), respectively. The authors measured 100-m and 400-m sprint times as the index of sprinting ability. They also measured V˙O2max and running economy (V˙O2 at 300 m·min−1 of running velocity). They used a single correlation analysis to assess relationships between 5000 m-SB or 10,000 m-SB and other elements. Results: There were significant correlations between 5000 m-SB was significantly correlated with 100-m sprint time (13.3 [0.7] s; r = .68, P = .014), 400-m sprint time (56.6 [2.7] s; r = .69, P = .013), and running economy (55.5 [3.9] mL·kg−1·min−1; r = .59, P = .045). There were significant correlations between 10,000 m-SB and 100-m sprint time (r = .72, P = .009) and 400-m sprint time (r = .85, P < .001). However, there was no significant correlation between 5000 m-SB or 10,000 m-SB and V˙O2max (72.0 [3.8] mL·kg−1·min−1). Conclusions: The authors' data suggest that sprinting ability is an important indicator of performance in elite long-distance runners.

Restricted access

Gil Rodas, Lourdes Osaba, David Arteta, Ricard Pruna, Dolors Fernández and Alejandro Lucia

Purpose: The authors investigated the association between risk of tendinopathies and genetic markers in professional team sports. Methods: The authors studied 363 (mean [SD]; 25 [6] y, 89% male) elite players (soccer, futsal, basketball, handball, and roller hockey) from a top-level European team (FC Barcelona, Spain). Of 363, 55% (cases) had experienced 1+ episodes of tendinopathy during 2008–2018 and 45% (controls) remained injury free. The authors first examined the association between single-nucleotide polymorphisms (SNPs) and tendinopathy risk in a hypothesis-free case-control genome-wide association study (495,837 SNPs) with additional target analysis of 58 SNPs that are potential candidates to influence tendinopathy risk based on the literature. Thereafter, the authors augmented the SNP set by performing synthetic variant imputation (1,419,369 SNPs) and then used machine learning-based multivariate modeling (support vector machine and random forest) to build a reliable predictive model. Results: Suggestive association (P < 10−5) was found for rs11154027 (gap junction alpha 1), rs4362400 (vesicle amine transport 1-like), and rs10263021 (contactin-associated protein-like 2). Carriage of 1+ variant alleles for rs11154027 (odds ratio = 2.11; 95% confidence interval, 1.07–4.19, P = 1.01 × 10−6) or rs4362400 (odds ratio = 1.98; 95% confidence interval, 1.05–3.73, P = 9.6 × 10−6) was associated with a higher risk of tendinopathy, whereas an opposite effect was found for rs10263021 (odds ratio = 0.42; 95% confidence interval, 0.20–0.91], P = 4.5 × 10−6). In the modeling approach, one of the most robust SNPs was rs10477683 in the fibrillin 2 gene encoding fibrillin 2, a component of connective tissue microfibrils involved in elastic fiber assembly. Conclusions : The authors have identified previously undescribed genetic predictors of tendinopathy in elite team sports athletes, notably rs11154027, rs4362400, and rs10263021.

Restricted access

Samuel Ryan, Emidio Pacecca, Jye Tebble, Joel Hocking, Thomas Kempton and Aaron J. Coutts

Purpose: To examine the measurement reliability and sensitivity of common athlete monitoring tools in professional Australian Football players. Methods: Test–retest reliability (noise) and weekly variation (signal) data were collected from 42 professional Australian footballers from 1 club during a competition season. Perceptual wellness was measured via questionnaires completed before main training sessions (48, 72, and 96 h postmatch), with players providing a rating (1–5 Likert scale) regarding their muscle soreness, sleep quality, fatigue level, stress, and motivation. Eccentric hamstring force and countermovement jumps were assessed via proprietary systems once per week. Heart rate recovery was assessed via a standard submaximal run test on a grass-covered field with players wearing a heart rate monitor. The heart rate recovery was calculated by subtracting average heart rate during final 10 seconds of rest from average heart rate during final 30 seconds of exercise. Typical test error was reported as coefficient of variation percentage (CV%) and intraclass coefficients. Sensitivity was calculated by dividing weekly CV% by test CV% to produce a signal to noise ratio. Results: All measures displayed acceptable sensitivity. Signal to noise ratio ranged from 1.3 to 11.1. Intraclass coefficients ranged from .30 to .97 for all measures. Conclusions: The heart rate recovery test, countermovement jump test, eccentric hamstring force test, and perceptual wellness all possess acceptable measurement sensitivity. Signal to noise ratio analysis is a novel method of assessing measurement characteristics of monitoring tools. These data can be used by coaches and scientists to identify meaningful changes in common measures of fitness and fatigue in professional Australian football.

Restricted access

Robert MacKenzie, Linda Monaghan, Robert A. Masson, Alice K. Werner, Tansinee S. Caprez, Lynsey Johnston and Ole J. Kemi

Purpose: Rock climbing performance relies on many characteristics. Herein, the authors identified the physical and physiological determinants of peak performance in rock climbing across the range from lower grade to elite. Methods: Forty four male and 33 female climbers with onsight maximal climbing grades 5a–8a and 5a–7b+, respectively, were tested for physical, physiological, and psychological characteristics (independent variables) that were correlated and modeled by multiple regression and principal component analysis to identify the determinants of rock climbing ability. Results: In males, 23 of 47 variables correlated with climbing ability (P < .05, Pearson correlation coefficients .773–.340), including shoulder endurance, hand and finger strength, shoulder power endurance, hip flexibility, lower-arm grip strength, shoulder power, upper-arm strength, core-body endurance, upper-body aerobic endurance, hamstrings and lower-back flexibility, aerobic endurance, and open-hand finger strength. In females, 10 of 47 variables correlated with climbing ability (P < .05, Pearson correlation coefficients .742–.482): shoulder endurance and power, lower-arm grip strength, balance, aerobic endurance, and arm span. Principal component analysis and univariate multiple regression identified the main explanatory variables. In both sexes, shoulder power and endurance measured as maximum pull-ups, average arm crank power, and bent-arm hang, emerged as the main determinants (P < .01; adjusted R 2 = .77 in males and .62 in females). In males, finger pincer (P = .07) and grip strength also had trends (P = .09) toward significant effects. Finally, in test-of-principle training studies, they trained to increase main determinants 42% to 67%; this improved climbing ability 2 to 3 grades. Conclusions: Shoulder power and endurance majorly determines maximal climbing. Finger, hand, and arm strength, core-body endurance, aerobic endurance, flexibility, and balance are important secondary determinants.

Restricted access

Kristof Kipp, John Krzyszkowski and Daniel Kant-Hull

Purpose: To use an artificial neural network (ANN) to model the effect of 15 weeks of resistance training on changes in countermovement jump (CMJ) performance in male track-and-field athletes. Methods: Resistance training volume load (VL) of 21 male division I track-and-field athletes was monitored over the course of 15 weeks, which covered their indoor and outdoor competitive season. Weekly CMJ height was also measured and used to calculate the overall 15-week change in CMJ performance. A feed-forward ANN with 5 hidden layers was used to model how the VL from each of the 15 weeks was associated with the overall change in CMJ height. Results: Testing the performance of the developed ANN on 4 separate athletes showed that 15 weeks of VL data could predict individual changes in CMJ height with an average error between 0.21 and 1.47 cm, which suggested that the ANN adequately modeled the relationship between weekly VL and its effects on CMJ performance. In addition, analysis of the relative importance of each week in predicting changes in CMJ height indicated that the VLs during deload or taper weeks were the best predictors (10%–17%) of changes in CMJ performance. Conclusions: ANN can be used to effectively model the effects of weekly VL on changes in CMJ performance. In addition, ANN can be used to assess the relative importance of each week in predicting changes in CMJ height.

Restricted access

Peter J. Whalley, Chey G. Dearing and Carl D. Paton

Purpose: Caffeine is frequently used by athletes as an ergogenic aid. Various alternate forms of caffeine administration are available, which may produce different effects. This investigation compares the effects of different forms of caffeine supplementation on 5-km running performance, and the relationship between athlete ability and degree of enhancement attained. Methods: Fourteen amateur runners completed a series of self-paced outdoor time trials following unknown ingestion of a placebo (P) or one of 3 alternate forms of caffeine supplement. Trials were randomized in a crossover design with caffeine (approximately 3–4.5 mg·kg−1) administered 15 minutes before each trial via chewing gum (CG), dissolvable mouth strips (CS), or tablet (CT). Results: Compared with P, all caffeine supplements led to worthwhile enhancements in running performance with a mean (±95% confidence limit) overall effect across all supplements of 1.4% ± 0.9%. Individual caffeine treatment effects (CG = 0.9% ± 1.4%, CS = 1.2% ± 1.0%, and CT = 2.0% ± 1.1%) were not significantly different (P > .05) from each other; however, CT trials produced the largest gain and was significantly different (P = .02) compared with P. There was no significant difference in heart rate or rate of perceived exertion across the performance trials. The magnitude of caffeine enhancement was also strongly correlated (r = .87) with no-treatment performance time. Conclusions: The findings showed that irrespective of delivery form, moderate dose of caffeine supplementation produces worthwhile gains in 5-km running performance compared with a P. Furthermore, the magnitude of caffeine enhancement is highly individualized, but it appears related to athlete performance ability.

Restricted access

Manuel Terraza-Rebollo and Ernest Baiget

Purpose: To examine the postactivation potentiation effect on serve velocity and accuracy in young competition tennis players using complex training, and comparing different upper and lower body heavy-load resistance exercises (HLRE). Methods: Fifteen competition tennis players (9 boys and 6 girls; age 15.6 [1.5] y) performed 1 control session and 3 experimental sessions using HLRE in a crossover randomized design: (1) bench press, (2) half squat, (3) bench press plus half squat, and (4) control trial. HLRE were performed by accomplishing 3 sets of 3 repetitions when bench press or half squat conditions were performed and 2 sets of 3 repetitions of each exercise when bench press plus half squat condition was performed at 80% 1-repetition maximum, lifting the load at maximum speed. To assess the serve velocity and accuracy, all participants performed 32 flat serves after the HLRE, divided into 4 sets of 8 serves (0, 5, 10, and 15 min postexercise), resting 20 seconds between serves, and 2 minutes and 40 seconds between sets. Results: There were no significant (P > .05) differences in ball velocity and accuracy following each recovery time and exercise, compared with the basal situation. Conclusions: These results suggest that complex training using HLRE is not a useful method for eliciting the postactivation potentiation effect in tennis serve and does not have any effect in serve accuracy in young competition tennis players.

Restricted access

Jeffrey D. Simpson, Ludmila Cosio-Lima, Eric M. Scudamore, Eric K. O’Neal, Ethan M. Stewart, Brandon L. Miller, Harish Chander and Adam C. Knight

Purpose: Wearing a weighted vest (WV) during daily living and training can enhance jump and sprint performance; however, studies examining the efficacy of this method in female populations is limited. This study examined the effect of wearing a WV during daily living and training on countermovement jump (CMJ), change-of-direction, and sprint performance. Methods: Trained females were separated into intervention (n = 9) and control (n = 10) groups. The intervention group wore WVs of ∼8% body mass 4 days per week for 8 hours per day (32 h/wk total), and 3 training sessions per week for the first 3 weeks. Subsequently, 3 weeks of regular training without WV stimulus was completed. The control group received no intervention and continued normal training for 6 weeks. Average and best performance was assessed on the single CMJ, four continuous CMJ, t-test change-of-direction drill, and a 25-m sprint at baseline, week 3, and week 6. Results: No significant interactions or group effects were found. However, significant time main effects revealed increases in average rate of force development during the CMJ from baseline to week 3 (P = .048) and week 6 (P = .013), whereas peak vertical ground reaction force increased during the four continuous CMJ from baseline to week 3 (P = .048) and week 6 (P = .025) for both groups. Conclusions: The lower relative WV load used in this study failed to elicit significant improvements in jump and sprint performance in comparison with routine training, or that which have been found in past investigations with elite male athletes completing high-intensity performance tasks with greater WV loads.

Restricted access

Francesco Campa, Catarina N. Matias, Elisabetta Marini, Steven B. Heymsfield, Stefania Toselli, Luís B. Sardinha and Analiza M. Silva

Purpose: To analyze the association between body fluid changes evaluated by bioelectrical impedance vector analysis and dilution techniques over a competitive season in athletes. Methods: A total of 58 athletes of both sexes (men: age 18.7 [4.0] y and women: age 19.2 [6.0] y) engaging in different sports were evaluated at the beginning (pre) and 6 months after (post) the competitive season. Deuterium dilution and bromide dilution were used as the criterion methods to assess total body water (TBW) and extracellular water (ECW), respectively; intracellular water (ICW) was calculated as TBW–ECW. Bioelectrical resistance and reactance were obtained with a phase-sensitive 50-kHz bioelectrical impedance analysis device; bioelectrical impedance vector analysis was applied. Dual-energy X-ray absorptiometry was used to assess fat mass and fat-free mass. The athletes were empirically classified considering TBW change (pre–post, increase or decrease) according to sex. Results: Significant mean vector displacements in the postgroups were observed in both sexes. Specifically, reductions in vector length (Z/H) were associated with increases in TBW and ICW (r = −.718, P < .01; r = −.630, P < .01, respectively) and decreases in ECW:ICW ratio (r = .344, P < .05), even after adjusting for age, height, and sex. Phase-angle variations were positively associated with TBW and ICW (r = .458, P < .01; r = .564, P < .01, respectively) and negatively associated with ECW:ICW (r = −.436, P < .01). Phase angle significantly increased in all the postgroups except in women in whom TBW decreased. Conclusions: The results suggest that bioelectrical impedance vector analysis is a suitable method to obtain a qualitative indication of body fluid changes during a competitive season in athletes.