Browse

You are looking at 21 - 30 of 8,384 items for :

  • Physical Education and Coaching x
Clear All
Restricted access

Samuel Ryan, Thomas Kempton and Aaron J. Coutts

Purpose: To apply data reduction methods to athlete-monitoring measures to address the issue of data overload for practitioners of professional Australian football teams. Methods: Data were collected from 45 professional Australian footballers from 1 club during the 2018 Australian Football League season. External load was measured in training and matches by 10-Hz OptimEye S5 and ClearSky T6 GPS units. Internal load was measured via the session rate of perceived exertion method. Perceptual wellness was measured via questionnaires completed before training sessions with players providing a rating (1–5 Likert scale) of muscle soreness, sleep quality, fatigue, stress, and motivation. Percentage of maximum speed was calculated relative to individual maximum velocity recorded during preseason testing. Derivative external training load measures (total daily, weekly, and monthly) were calculated. Principal-component analyses (PCAs) were conducted for Daily and Chronic measures, and components were identified via scree plot inspection (eigenvalue > 1). Components underwent orthogonal rotation with a factor loading redundancy threshold of 0.70. Results: The Daily PCA identified components representing external load, perceived wellness, and internal load. The Chronic PCA identified components representing 28-d speed exposure, 28-d external load, 7-d external load, and 28-d internal load. Perceived soreness did not meet the redundancy threshold. Conclusions: Monitoring player exposure to maximum speed is more appropriate over chronic than short time frames to capture variations in between-matches training-cycle duration. Perceived soreness represents a distinct element of a player’s perception of wellness. Summed-variable and single-variable approaches are novel methods of data reduction following PCA of athlete monitoring data.

Restricted access

Laura Martin and Martin Camiré

Coaches have been shown to play key roles in the life-skills development and transfer process. The purpose of the study was to examine coaches’ approaches to teaching life skills and their transfer in youth sport. A multiple case study design was employed. Each case was composed of one coach and at least two of their athletes involved in youth baseball, rugby, soccer, and sailing. The data collection involved pre- and postseason interviews and in-season journaling with coaches, as well as postseason interviews with athletes. The results indicated that the coaches predominantly used implicit approaches, with just over half identified as using some explicit approaches to teach life skills. The coaches discussed several factors that influenced their decisions to use or not use explicit life-skills teaching approaches. The results have implications for future research and applied efforts aimed at maximizing the developmental gains athletes can derive from their participation in sport.

Restricted access

Steve M. Smith, Stewart T. Cotterill and Hazel Brown

The psychological environment where sporting activity is undertaken has been suggested to influence performance. The coach orchestrates practice activities and their perception of the psychological environment has been regularly evaluated in competition research but not in practice. The aim of this study was to explore coach perceptions of the psychological influencing factors present in the practice environment. Participants were six U.K. academy basketball coaches (mean age = 35 years). Data were collected through semi-structured interviews and analyzed using interpretative phenomenological analysis. Five superordinate themes were constructed from data analysis, which were player characteristics, team-first orientation, current performance perceptions, coach characteristics, and coaching structure. Results suggest that the coach has a unique insight into the psychological influencing factors of the practice environment. Combined with the practice environment framework offered by Smith, Cotterill, and Brown, a model is offered to aid practitioners in understanding the interrelatedness of psychological influencing factors in the practice environment.

Restricted access

Peter M. Fowler, Wade Knez, Heidi R. Thornton, Charli Sargent, Amy E. Mendham, Stephen Crowcroft, Joanna Miller, Shona Halson and Rob Duffield

Purpose: To assess the efficacy of a combined light exposure and sleep hygiene intervention to improve team-sport performance following eastward long-haul transmeridian travel. Methods: Twenty physically trained males underwent testing at 09:00 and 17:00 hours local time on 4 consecutive days at home (baseline) and the first 4 days following 21 hours of air travel east across 8 time zones. In a randomized, matched-pairs design, participants traveled with (INT; n = 10) or without (CON; n = 10) a light exposure and sleep hygiene intervention. Performance was assessed via countermovement jump, 20-m sprint, T test, and Yo-Yo Intermittent Recovery Level 1 tests, together with perceptual measures of jet lag, fatigue, mood, and motivation. Sleep was measured using wrist activity monitors in conjunction with self-report diaries. Results: Magnitude-based inference and standardized effect-size analysis indicated there was a very likely improvement in the mean change in countermovement jump peak power (effect size 1.10, ±0.55), and likely improvement in 5-m (0.54, ±0.67) and 20-m (0.74, ±0.71) sprint time in INT compared with CON across the 4 days posttravel. Sleep duration was most likely greater in INT both during travel (1.61, ±0.82) and across the 4 nights following travel (1.28, ±0.58) compared with CON. Finally, perceived mood and motivation were likely worse (0.73, ±0.88 and 0.63, ±0.87) across the 4 days posttravel in CON compared with INT. Conclusions: Combined light exposure and sleep hygiene improved speed and power but not intermittent-sprint performance up to 96 hours following long-haul transmeridian travel. The reduction of sleep disruption during and following travel is a likely contributor to improved performance.

Open access

Sophia Nimphius and Matthew J. Jordan

Restricted access

Sofie Koch, Jens Troelsen, Samuel Cassar and Charlotte Skau Pawlowski

Purpose: In 2014, the Danish Government introduced a new public school reform, which included implementation of 45 min of daily physical activity (PA) within the academic classroom curriculum. The purpose of the present study was to explore school staff’s perceived barriers to implementation of a national PA policy. Method: A mixed-methods approach using a questionnaire and semistructured interviews was conducted. A total of 198 teachers and 26 school management team members (principals, deputy principals, and leading teachers) from 31 schools completed a questionnaire, and 11 school management team members were interviewed. The socioecological model was used as a theoretical framework to examine the results. Results: A total of 15 different barriers were identified and reflected within all levels of the socioecological model. Facilities, motivation, and time were the most prominent barriers identified. Conclusion: Development and deployment of a national PA policy needs to be done in cooperation with consumers from all levels within the socioecological model to ensure successful implementation.

Restricted access

Steve H. Faulkner and Philippa Jobling

Purpose: Cycling time trials (TTs) are characterized by riders’ adopting aerodynamic positions to lessen the impact of aerodynamic drag on velocity. The optimal performance requirements for TTs likely exist on a continuum of rider aerodynamics versus physiological optimization, yet there is little empirical evidence to inform riders and coaches. The aim of the present study was to investigate the relationship between aerodynamic optimization, energy expenditure, heat production, and performance. Methods: Eleven trained cyclists completed 5 submaximal exercise tests followed by a TT. Trials were completed at hip angles of 12° (more horizontal), 16°, 20°, 24° (more vertical), and their self-selected control position. Results: The largest decrease in power output at anaerobic threshold compared with control occurred at 12° (−16 [20] W, P = .03; effect size [ES] = 0.8). There was a linear relationship between upper-body position and heat production (R2 = .414, P = .04) but no change in mean body temperature, suggesting that, as upper-body position and hip angle increase, convective and evaporative cooling also rise. The highest aerodynamic–physiological economy occurred at 12° (384 [53] W·CdA−1·L−1·min−1, ES = 0.4), and the lowest occurred at 24° (338 [28] W·CdA−1·L−1·min−1, ES = 0.7), versus control (367 [41] W·CdA−1·L−1·min−1). Conclusion: These data suggest that the physiological cost of reducing hip angle is outweighed by the aerodynamic benefit and that riders should favor aerodynamic optimization for shorter TT events. The impact on thermoregulation and performance in the field requires further investigation.

Restricted access

Naoya Takei, Katsuyuki Kakinoki, Olivier Girard and Hideo Hatta

Background: Training in hypoxia versus normoxia often induces larger physiological adaptations, while this does not always translate into additional performance benefits. A possible explanation is a reduced oxygen flux, negatively affecting training intensity and/or volume (decreasing training stimulus). Repeated Wingates (RW) in normoxia is an efficient training strategy for improving both physiological parameters and exercise capacity. However, it remains unclear whether the addition of hypoxia has a detrimental effect on RW performance. Purpose: To test the hypothesis that acute moderate hypoxia exposure has no detrimental effect on RW, while both metabolic and perceptual responses would be slightly higher. Methods: On separate days, 7 male university sprinters performed 3 × 30-s Wingate efforts with 4.5-min passive recovery in either hypoxia (FiO2: 0.145) or normoxia (FiO2: 0.209). Arterial oxygen saturation was assessed before the first Wingate effort, while blood lactate concentration and ratings of perceived exertion were measured after each bout. Results: Mean (P = .92) and peak (P = .63) power outputs, total work (P = .98), and the percentage decrement score (P = .25) were similar between conditions. Arterial oxygen saturation was significantly lower in hypoxia versus normoxia (92.0% [2.8%] vs 98.1% [0.4%], P < .01), whereas blood lactate concentration (P = .78) and ratings of perceived exertion (P = .51) did not differ between conditions. Conclusion: In sprinters, acute exposure to moderate hypoxia had no detrimental effect on RW performance and associated metabolic and perceptual responses.