Browse

You are looking at 31 - 40 of 16,631 items for :

  • Sport and Exercise Science/Kinesiology x
Clear All
Restricted access

Andrew N. Bosch, Kirsten C. Flanagan, Maaike M. Eken, Adrian Withers, Jana Burger and Robert P. Lamberts

Elliptical trainers and steppers are proposed as useful exercise modalities in the rehabilitation of injured runners due to the reduced stress on muscles and joints when compared to running. This study compared the physiological responses to submaximal running (treadmill) with exercise on the elliptical trainer and stepper devices at three submaximal but identical workloads. Authors had 18 trained runners (male/female: N = 9/9, age: mean ± SD = 23 ± 3 years) complete randomized maximal oxygen consumption tests on all three modalities. Submaximal tests of 3 min were performed at 60%, 70%, and 80% of peak workload individually established for each modality. Breath-by-breath oxygen consumption, heart rate, fuel utilization, and energy expenditure were determined. The value of maximal oxygen consumption was not different between treadmill, elliptical, and stepper (49.3 ± 5.3, 48.0 ± 6.6, and 46.7 ± 6.2 ml·min−1·kg−1, respectively). Both physiological measures (oxygen consumption and heart rate) as well as carbohydrate and fat oxidation differed significantly between the different exercise intensities (60%, 70%, and 80%) but did not differ between the treadmill, elliptical trainer, and stepper. Therefore, the elliptical trainer and stepper are suitable substitutes for running during periods when a reduced running load is required, such as during rehabilitation from running-induced injury.

Restricted access

Karl Spiteri, Kate Grafton, John Xerri de Caro and David Broom

The International Physical Activity Questionnaire (IPAQ) is a widely used self-reported physical activity (PA) measure developed to allow for international cross-country comparisons. Due to its unavailability, the aim of this study was to translate the IPAQ-long to Maltese and undertake reliability testing. The IPAQ-long English version was translated into Maltese following the IPAQ guidelines, which included backwards translation. Maltese-speaking participants, aged between 18 and 69 years, were recruited through convenience sampling (n = 170). Participants completed the IPAQ-long twice within an 8- to 48-hr period. PA was calculated in MET minutes per week, and reliability was calculated using the Spearman correlation, intraclass correlation coefficient, concordance correlation coefficient, and Bland–Altman plots. A total of 155 participants completed the questionnaire at two time points. Spearman correlation was .83 (.76–.88) for total PA and .84 (.77–.89) for total sitting time. The intraclass correlation coefficient was .83 (.76–.88) and the concordance correlation coefficient was .75–.87 for total PA. The lowest reliability was for total transport, with a concordance correlation coefficient of .21−.45. Bland–Altman plots highlight that 95% of the differences fell within 2 SDs from the mean. Since the Maltese IPAQ-long has similar reliability to the English version, the authors recommend that health care professionals and PA practitioners use this tool when examining population-level PA among Maltese-speaking individuals.

Restricted access

Kasper Salin, Anna Kankaanpää, Xiaolin Yang, Tuija H. Tammelin, Costan G. Magnussen, Risto Telama, Nina Hutri-Kähönen, Jorma S.A. Viikari, Olli T. Raitakari and Mirja Hirvensalo

Background: To examine if major life changes over a 4-year period among 34- to 49-year-old adults (mean = 41.8, SD = 5.0) were associated with a change in physical activity in men (37.7%) and women (62.3%). Methods: Daily steps and aerobic steps (steps that lasted for at least 10 min without interruption at a pace of >60 steps/min) were collected from 1051 participants in 2007 and 2011. Changes in marital status, work status, and residence and the birth of a child were determined from both time points. A latent change score model was used to examine mean changes in daily total steps, aerobic steps, and nonaerobic steps (total steps minus aerobic steps). Results: Women who had a first child in the 4-year period had a decrease in their nonaerobic steps (P = .001). Men who divorced in the 4-year period had a decrease in their nonaerobic steps (P = .020), whereas women who recoupled decreased their total steps (P = .030). Conclusions: Counseling for parents having a first child on how to increase physical activity in their everyday life could potentially have an influence on an individual’s physical activity.

Restricted access

Megan A. Kuikman, Margo Mountjoy, Trent Stellingwerff and Jamie F. Burr

Relative energy deficiency in sport (RED-S) can result in negative health and performance outcomes in both male and female athletes. The underlying etiology of RED-S is low energy availability (LEA), which occurs when there is insufficient dietary energy intake to meet exercise energy expenditure, corrected for fat-free mass, leaving inadequate energy available to ensure homeostasis and adequate energy turnover (optimize normal bodily functions to positively impact health), but also optimizing recovery, training adaptations, and performance. As such, treatment of RED-S involves increasing energy intake and/or decreasing exercise energy expenditure to address the underlying LEA. Clinically, however, the time burden and methodological errors associated with the quantification of energy intake, exercise energy expenditure, and fat-free mass to assess energy availability in free-living conditions make it difficult for the practitioner to implement in everyday practice. Furthermore, interpretation is complicated by the lack of validated energy availability thresholds, which can result in compromised health and performance outcomes in male and female athletes across various stages of maturation, ethnic races, and different types of sports. This narrative review focuses on pragmatic nonpharmacological strategies in the treatment of RED-S, featuring factors such as low carbohydrate availability, within-day prolonged periods of LEA, insufficient intake of bone-building nutrients, lack of mechanical bone stress, and/or psychogenic stress. This includes the implementation of strategies that address exacerbating factors of LEA, as well as novel treatment methods and underlying mechanisms of action, while highlighting areas of further research.

Restricted access

Courtney M. Butowicz, Julian C. Acasio and Brad D. Hendershot

Altered trunk movements during gait in persons with lower-limb amputation are often associated with an increased risk for secondary health conditions; however, the postural control strategies underlying such alterations remain unclear. In this secondary analysis, the authors employed nonlinear measures of triplanar trunk accelerations via short-term Lyapunov exponents to investigate trunk local stability as well as spatiotemporal gait parameters to describe gait mechanics. The authors also evaluated the influence of a concurrent task on trunk local stability and gait mechanics to explore if competition for neuromuscular processing resources can assist in identifying unique strategies to control kinematic variability. Sixteen males with amputation—8 transtibial and 8 transfemoral—and 8 uninjured males (controls) walked on a treadmill at their self-selected speed (mean = 1.2 m/s ±10%) in 5 experimental conditions (8 min each): 4 while performing a concurrent task (2 walking and 2 seated) and 1 with no concurrent task. Individuals with amputation demonstrated significantly smaller Lyapunov exponents than controls in all 3 planes of motion, regardless of concurrent task or level of amputation (P < .0001). Individuals with transfemoral amputation walked with wider strides compared with individuals with transtibial amputation and controls (P < .0001). Individuals with amputation demonstrated more trunk kinematic variability in the presence of wider strides compared with individuals without amputation, and it appears that performing a concurrent cognitive task while walking did not change trunk or gait mechanics.

Restricted access

Xiyao Shan, Pavlos Evangelidis, Takaki Yamagishi, Shun Otsuka, Fumiko Tanaka, Shigenobu Shibata and Yasuo Kawakami

This study investigated (a) site- and direction-dependent variations of passive triceps surae aponeurosis stiffness and (b) the relationships between aponeurosis stiffness and muscle strength and walking performance in older individuals. Seventy-nine healthy older adults participated in this study. Shear wave velocities of the triceps surae aponeuroses at different sites and in two orthogonal directions were obtained in a prone position at rest using supersonic shear imaging. The maximal voluntary isometric contraction torque of the plantar flexors and normal (preferred) and fast (fastest possible) walking speeds (5-m distance) were also measured. The shear wave velocities of the adjoining aponeuroses were weakly associated with plantar flexion torque (r = .23–.34), normal (r = .26), and fast walking speed (r = .25). The results show clear spatial variations and anisotropy of the triceps surae aponeuroses stiffness in vivo, and the aponeurosis stiffness was associated with physical ability in older adults.

Restricted access

Yumeng Li, Jupil Ko, Marika A. Walker, Cathleen N. Brown and Kathy J. Simpson

The purpose of the present study was to examine the effect of chronic ankle instability (CAI) on lower-extremity joint coordination and stiffness during landing. A total of 21 female participants with CAI and 21 pair-matched healthy controls participated in the study. Lower-extremity joint kinematics were collected using a 7-camera motion capture system, and ground reaction forces were collected using 2 force plates during drop landings. Coupling angles were computed based on the vector coding method to assess joint coordination. Coupling angles were compared between the CAI and control groups using circular Watson–Williams tests. Joint stiffness was compared between the groups using independent t tests. Participants with CAI exhibited strategies involving altered joint coordination including a knee flexion dominant pattern during 30% and 70% of their landing phase and a more in-phase motion pattern between the knee and hip joints during 30% and 40% and 90% and 100% of the landing phase. In addition, increased ankle inversion and knee flexion stiffness were observed in the CAI group. These altered joint coordination and stiffness could be considered as a protective strategy utilized to effectively absorb energy, stabilize the body and ankle, and prevent excessive ankle inversion. However, this strategy could result in greater mechanical demands on the knee joint.

Restricted access

Matthew S. Briggs, Claire Spech, Rachel King, Mike McNally, Matthew Paponetti, Sharon Bout-Tabaku and Laura Schmitt

Obese (OB) youth demonstrate altered knee mechanics and worse lower-extremity performance compared with healthy weight (HW) youth. Our objectives were to compare sagittal plane knee landing mechanics between OB and HW youth and to examine the associations of knee and hip extension peak torque with landing mechanics in OB youth. Twenty-four OB and 24 age- and sex-matched HW youth participated. Peak torque was measured and normalized to leg lean mass. Peak knee flexion angle and peak internal knee extension moment were measured during a single-leg hop landing. Paired t tests, Pearson correlation coefficients, and Bonferroni corrections were used. OB youth demonstrated worse performance and lower knee extension (OB: 12.76 [1.38], HW: 14.03 [2.08], P = .03) and hip extension (OB: 8.59 [3.13], HW: 11.10 [2.89], P = .005) peak torque. Furthermore, OB youth demonstrated lower peak knee flexion angles (OB: 48.89 [45.41 to 52.37], HW: 56.07 [52.59 to 59.55], P = .02) and knee extension moments (OB: −1.73 [−1.89 to −1.57], HW: −2.21 [−2.37 to −2.05], P = .0001) during landing compared with HW youth. Peak torque measures were not correlated with peak knee flexion angle nor internal knee extension moment during landing in either group (P > .01). OB youth demonstrated altered landing mechanics compared with HW youth. However, no associations among peak torque measurements and knee landing mechanics were present.

Restricted access

Jereme B. Outerleys, Michael J. Dunbar, Glen Richardson, Cheryl L. Hubley-Kozey and Janie L. Astephen Wilson

Total knee arthroplasty (TKA) surgery improves knee joint kinematics and kinetics during gait for most patients, but a lack of evidence exists for the level and incidence of improvement that is achieved. The objective of this study was to quantify patient-specific improvements in knee biomechanics relative to osteoarthritis (OA) severity levels. Seventy-two patients underwent 3-dimensional (3D) gait analysis before and 1 year after TKA surgery, as well as 72 asymptomatic adults and 72 with moderate knee OA. A combination of principal component analysis and discriminant analyses were used to categorize knee joint biomechanics for patients before and after surgery relative to asymptomatic, moderate, and severe OA. Post-TKA, 63% were categorized with knee biomechanics consistent with moderate OA, 29% with severe OA, and 8% asymptomatic. The magnitude and pattern of the knee adduction moment and angle (frontal plane features) were the most significant contributors in discriminating between pre-TKA and post-TKA knee biomechanics. Standard of care TKA improves knee biomechanics during gait to levels most consistent with moderate knee OA and predominately targets frontal plane features. These results provide evidence for the level of improvement in knee biomechanics that can be expected following surgery and highlight the biomechanics most targeted by surgery.