You are looking at 81 - 90 of 4,482 items for :

  • Sport and Exercise Science/Kinesiology x
  • Physical Education and Coaching x
Clear All
Restricted access

Pablo Jodra, Raúl Domínguez, Antonio J. Sánchez-Oliver, Pablo Veiga-Herreros and Stephen J. Bailey

Purpose: Dietary supplementation with inorganic nitrate (NO3 ) can enhance high-intensity exercise performance by improving skeletal muscle contractility and metabolism, but the extent to which this might be linked to altered psychophysiological processes is presently unclear. The purpose of this study was to assess the effects of NO3 -rich beetroot juice (BJ) supplementation on profile of mood states, ratings of perceived exertion (RPE), and performance in a 30-second Wingate cycle test. Methods: In a double-blind, randomized, cross-over study, 15 subjects completed 2 laboratory sessions after ingesting NO3 -rich or NO3 -depleted (placebo) BJ. Participants initially completed the profile of mood states questionnaire. Subsequently, participants completed a warm-up followed by a 30-second all-out Wingate cycling test. After the Wingate test, participants immediately indicated the RPE of their leg muscles (RPEmuscular), cardiovascular system (RPEcardio), and general RPE (RPEgeneral). Results: Compared with the placebo condition, supplementation with BJ increased peak power output (W peak) (+4.4%, 11.5 [0.7] vs 11.1 [1.0] W·kg−1; P = .039) and lowered the time taken to reach W peak (7.3 [0.9] vs 8.7 [1.5] s; P = .002) during the Wingate test. The profile of mood states score linked to tension was increased prior to the Wingate test (4.8 [3.0] vs 3.4 [2.4]; P = .040), and RPEmuscular was lowered immediately following the Wingate test (17.7 [1.6] vs 18.3 [1.0]; P = .031), after BJ compared with placebo ingestion. Conclusions: Acute BJ supplementation improved pre-exercise tension, 30-second Wingate test performance, and lowered postexercise RPEmuscular.

Restricted access

Justin J. Merrigan, James J. Tufano, Jonathan M. Oliver, Jason B. White, Jennifer B. Fields and Margaret T. Jones

Purpose: To examine rest redistribution (RR) effects on back squat kinetics and kinematics in resistance-trained women. Methods: Twelve women from strength and college sports (5.0 [2.2] y training history) participated in the randomized crossover design study with 72 hours between sessions (3 total). Participants completed 4 sets of 10 repetitions using traditional sets (120-s interset rest) and RR (30-s intraset rest in the middle of each set; 90-s interset rest) with 70% of their 1-repetition maximum. Kinetics and kinematics were sampled via force plate and 4 linear position transducers. The greatest value of repetitions 1 to 3 (peak repetition) was used to calculate percentage loss, [(repetition 10–peak repetition)/(peak repetition) × 100], and maintenance, {100–[(set mean–peak repetition)/(peak repetition)] × 100}, of velocity and power for each set. Repeated-measures analysis of variance was used for analyses (P < .05). Results: Mean and peak force did not differ between conditions. A condition × repetition interaction existed for peak power (P = .049) but not for peak velocity (P = .110). Peak power was greater in repetitions 7 to 9 (P < .05; d = 1.12–1.27) during RR. The percentage loss of velocity (95% confidence interval, –0.22% to –7.22%; P = .039) and power (95% confidence interval, –1.53% to –7.87%; P = .008) were reduced in RR. Mean velocity maintenance of sets 3 (P = .036; d = 1.90) and 4 (P = .015; d = 2.30) and mean power maintenance of set 4 (P = .006; d = 2.65) were greater in RR. Conclusion: By redistributing a portion of long interset rest into the middle of a set, velocity and power were better maintained. Therefore, redistributing rest may be beneficial for reducing fatigue in resistance-trained women.

Restricted access

Arthur H. Bossi, Wouter P. Timmerman and James G. Hopker

Purpose: There are several published equations to calculate energy expenditure (EE) from gas exchanges. The authors assessed whether using different EE equations would affect gross efficiency (GE) estimates and their reliability. Methods: Eleven male and 3 female cyclists (age 33 [10] y; height: 178 [11] cm; body mass: 76.0 [15.1] kg; maximal oxygen uptake: 51.4 [5.1] mL·kg−1·min−1; peak power output: 4.69 [0.45] W·kg−1) completed 5 visits to the laboratory on separate occasions. In the first visit, participants completed a maximal ramp test to characterize their physiological profile. In visits 2 to 5, participants performed 4 identical submaximal exercise trials to assess GE and its reliability. Each trial included three 7-minute bouts at 60%, 70%, and 80% of the gas exchange threshold. EE was calculated with 4 equations by Péronnet and Massicotte, Lusk, Brouwer, and Garby and Astrup. Results: All 4 EE equations produced GE estimates that differed from each other (all P < .001). Reliability parameters were only affected when the typical error was expressed in absolute GE units, suggesting a negligible effect—related to the magnitude of GE produced by each EE equation. The mean coefficient of variation for GE across different exercise intensities and calculation methods was 4.2%. Conclusions: Although changing the EE equation does not affect GE reliability, exercise scientists and coaches should be aware that different EE equations produce different GE estimates. Researchers are advised to share their raw data to allow for GE recalculation, enabling comparison between previous and future studies.

Restricted access

João Ribeiro, Luís Teixeira, Rui Lemos, Anderson S. Teixeira, Vitor Moreira, Pedro Silva and Fábio Y. Nakamura

Purpose: The current study aimed to compare the effects of plyometric (PT) versus optimum power load (OPL) training on physical performance of young high-level soccer players. Methods: Athletes were randomly divided into PT (horizontal and vertical drills) and OPL (squat + hip thrust exercises at the load of maximum power output) interventions, applied over 7 weeks during the in-season period. Squat and countermovement jumps, maximal sprint (10 and 30 m), and change of direction (COD; agility t test) were the pretraining and posttraining measured performance variables. Magnitude-based inference was used for within- and between-group comparisons. Results: OPL training induced moderate improvements in vertical squat jump (effect size [ES]: 0.97; 90% confidence interval [CI], 0.32–1.61) and countermovement jump (ES: 1.02; 90% CI, 0.46–1.57), 30-m sprint speed (ES: 1.02; 90% CI, 0.09–1.95), and COD performance (ES: 0.93; 90% CI, 0.50–1.36). After PT training method, vertical squat jump (ES: 1.08; 90% CI, 0.66–1.51) and countermovement jump (ES: 0.62; 90% CI, 0.18–1.06) were moderately increased, while small enhancements were noticed for 30-m sprint speed (ES: 0.21; 90% CI, −0.02 to 0.45) and COD performance (ES: 0.53; 90% CI, 0.24–0.81). The 10-m sprint speed possibly increased after PT intervention (small ES: 0.25; 90% CI, −0.05 to 0.54), but no substantial change (small ES: 0.36; 90% CI, −0.40 to 1.13) was noticed in OPL. For between-group analyses, the COD ability and 30-m sprint performances were possibly (small ES: 0.30; 90% CI, −0.20 to 0.81; Δ = +1.88%) and likely (moderate ES: 0.81; 90% CI, −0.16 to 1.78; Δ = +2.38%) more improved in the OPL than in the PT intervention, respectively. Conclusions: The 2 different training programs improved physical performance outcomes during the in-season period. However, the combination of vertically and horizontally based training exercises (squat + hip thrust) at optimum power zone led to superior gains in COD and 30-m linear sprint performances.

Restricted access

Fergus O’Connor, Heidi R. Thornton, Dean Ritchie, Jay Anderson, Lindsay Bull, Alex Rigby, Zane Leonard, Steven Stern and Jonathan D. Bartlett

Sprint capacity is an important attribute for team-sport athletes, yet the most appropriate method to analyze it is unclear. Purpose: To examine the relationship between sprint workloads using relative versus absolute thresholds and lower-body soft-tissue and bone-stress injury incidence in professional Australian rules football. Methods: Fifty-three professional Australian rules football athletes’ noncontact soft-tissue and bone-stress lower-body injuries (N = 62) were recorded, and sprint workloads were quantified over ∼18 months using the global positioning system. Sprint volume (m) and exposures (n) were determined using 2 methods: absolute (>24.9 km·h−1) and relative (≥75%, ≥80%, ≥85%, ≥90%, ≥95% of maximal velocity). Relationships between threshold methods and injury incidence were assessed using logistic generalized additive models. Incidence rate ratios and model performances’ area under the curve were reported. Results: Mean (SD) maximal velocity for the group was 31.5 (1.4), range 28.6 to 34.9 km·h−1. In comparing relative and absolute thresholds, 75% maximal velocity equated to ~1.5 km·h−1 below the absolute speed threshold, while 80% and 85% maximal velocity were 0.1 and 1.7 km·h−1 above the absolute speed threshold, respectively. Model area under the curve ranged from 0.48 to 0.61. Very low and very high cumulative sprint loads ≥80% across a 4-week period, when measured relatively, resulted in higher incidence rate ratios (2.54–3.29), than absolute thresholds (1.18–1.58). Discussion: Monitoring sprinting volume relative to an athlete’s maximal velocity should be incorporated into athlete monitoring systems. Specifically, quantifying the distance covered at >80% maximal velocity will ensure greater accuracy in determining sprint workloads and associated injury risk.

Restricted access

Ben T. Stephenson, Sven P. Hoekstra, Keith Tolfrey and Victoria L. Goosey-Tolfrey

Purpose: Paratriathletes may display impairments in autonomic (sudomotor and/or vasomotor function) or behavioral (drinking and/or pacing of effort) thermoregulation. As such, this study aimed to describe the thermoregulatory profile of athletes competing in the heat. Methods: Core temperature (T c) was recorded at 30-second intervals in 28 mixed-impairment paratriathletes during competition in a hot environment (air temperature = 33°C, relative humidity = 35%–41%, and water temperature = 25°C–27°C), via an ingestible temperature sensor (BodyCap e-Celsius). Furthermore, in a subset of 9 athletes, skin temperature was measured. Athletes’ wetsuit use was noted while heat illness symptoms were self-reported postrace. Results: In total, 22 athletes displayed a T c ≥ 39.5°C with 8 athletes ≥40.0°C. There were increases across the average T c for swim, bike, and run sections (P ≤ .016). There was no change in skin temperature during the race (P ≥ .086). Visually impaired athletes displayed a significantly greater T c during the run section than athletes in a wheelchair (P ≤ .021). Athletes wearing a wetsuit (57% athletes) had a greater T c when swimming (P ≤ .032), whereas those reporting heat illness symptoms (57% athletes) displayed a greater T c at various time points (P ≤ .046). Conclusions: Paratriathletes face significant thermal strain during competition in the heat, as evidenced by high T c, relative to previous research in able-bodied athletes and a high incidence of self-reported heat illness symptomatology. Differences in the T c profile exist depending on athletes’ race category and wetsuit use.

Restricted access

Alan J. McCubbin, Anyi Zhu, Stephanie K. Gaskell and Ricardo J.S. Costa

The impact of a carbohydrate-electrolyte solution with sodium alginate and pectin for hydrogel formation (CES-HGel), was compared to a standard CES with otherwise matched ingredients (CES-Std), for blood glucose, substrate oxidation, gastrointestinal symptoms (GIS; nausea, belching, bloating, pain, regurgitation, flatulence, urge to defecate, and diarrhea), and exercise performance. Nine trained male endurance runners completed 3 hr of steady-state running (SS) at 60% V˙O2max, consuming 90 g/hr of carbohydrate from CES-HGel or CES-Std (53 g/hr maltodextrin, 37 g/hr fructose, 16% w/v solution) in a randomized crossover design, followed by an incremental time to exhaustion (TTE) test. Blood glucose and substrate oxidation were measured every 30 min during SS and oxidation throughout TTE. Breath hydrogen (H2) was measured every 30 min during exercise and every 15 min for 2 hr postexercise. GIS were recorded every 15 min throughout SS, immediately after and every 15-min post-TTE. No differences in blood glucose (incremental area under the curve [mean ± SD]: CES-HGel 1,100 ± 96 mmol·L−1·150 min−1 and CES-Std 1,076 ± 58 mmol·L−1·150 min−1; p = .266) were observed during SS. There were no differences in substrate oxidation during SS (carbohydrate: p = .650; fat: p = .765) or TTE (carbohydrate: p = .466; fat: p = .633) and no effect of trial on GIS incidence (100% in both trials) or severity (summative rating score: CES-HGel 29.1 ± 32.6 and CES-Std 34.8 ± 34.8; p = .262). Breath hydrogen was not different between trials (p = .347), nor was TTE performance (CES-HGel 722 ± 182 s and CES-Std: 756 ± 187 s; p = .08). In conclusion, sodium alginate and pectin added to a CES consumed during endurance running does not alter the blood glucose responses, carbohydrate malabsorption, substrate oxidation, GIS, or TTE beyond those of a CES with otherwise matched ingredients.

Restricted access

Alannah K. A. McKay, Ida A. Heikura, Louise M. Burke, Peter Peeling, David B. Pyne, Rachel P.L. van Swelm, Coby M. Laarakkers and Gregory R. Cox

Sleeping with low carbohydrate (CHO) availability is a dietary strategy that may enhance training adaptation. However, the impact on an athlete’s health is unclear. This study quantified the effect of a short-term “sleep-low” dietary intervention on markers of iron regulation and immune function in athletes. In a randomized, repeated-measures design, 11 elite triathletes completed two 4-day mixed cycle run training blocks. Key training sessions were structured such that a high-intensity training session was performed in the field on the afternoon of Days 1 and 3, and a low-intensity training (LIT) session was performed on the following morning in the laboratory (Days 2 and 4). The ingestion of CHO was either divided evenly across the day (HIGH) or restricted between the high-intensity training and LIT sessions, so that the LIT session was performed with low CHO availability (LOW). Venous blood and saliva samples were collected prior to and following each LIT session and analyzed for interleukin-6, hepcidin 25, and salivary immunoglobulin-A. Concentrations of interleukin-6 increased acutely after exercise (p < .001), but did not differ between dietary conditions or days. Hepcidin 25 increased 3-hr postexercise (p < .001), with the greatest increase evident after the LOW trial on Day 2 (2.5 ± 0.9 fold increase ±90% confidence limit). The salivary immunoglobulin-A secretion rate did not change in response to exercise; however, it was highest during the LOW condition on Day 4 (p = .046). There appears to be minimal impact to markers of immune function and iron regulation when acute exposure to low CHO availability is undertaken with expert nutrition and coaching input.

Restricted access

Craig Pickering and Jozo Grgic

Caffeine is a well-established ergogenic aid, with its performance-enhancing effects demonstrated across a wide variety of exercise modalities. Athletes tend to frequently consume caffeine as a performance enhancement method in training and competition. There are a number of methods available as a means of consuming caffeine around exercise, including caffeine anhydrous, sports drinks, caffeine carbohydrate gels, and gum. One popular method of caffeine ingestion in nonathletes is coffee, with some evidence suggesting it is also utilized by athletes. In this article, we discuss the research pertaining to the use of coffee as an ergogenic aid, exploring (a) whether caffeinated coffee is ergogenic, (b) whether dose-matched caffeinated coffee provides a performance benefit similar in magnitude to caffeine anhydrous, and (c) whether decaffeinated coffee consumption affects the ergogenic effects of a subsequent isolated caffeine dose. There is limited evidence that caffeinated coffee has the potential to offer ergogenic effects similar in magnitude to caffeine anhydrous; however, this requires further investigation. Coingestion of caffeine with decaffeinated coffee does not seem to limit the ergogenic effects of caffeine. Although caffeinated coffee is potentially ergogenic, its use as a preexercise caffeine ingestion method represents some practical hurdles to athletes, including the consumption of large volumes of liquid and difficulties in quantifying the exact caffeine dose, as differences in coffee type and brewing method may alter caffeine content. The use of caffeinated coffee around exercise has the potential to enhance performance, but athletes and coaches should be mindful of the practical limitations.

Restricted access

Guillaume P. Ducrocq, Thomas J. Hureau, Olivier Meste and Grégory M. Blain

Context: Drop jumps and high-intensity interval running are relevant training methods to improve explosiveness and endurance performance, respectively. Combined training effects might, however, be achieved by performing interval drop jumping. Purpose: To determine the acute effects of interval drop jumping on oxygen uptake (V˙O2)—index of cardioventilatory/oxidative stimulation level and peripheral fatigue—a limiting factor of explosiveness. Methods: Thirteen participants performed three 11-minute interval training sessions during which they ran 15 seconds at 120% of the velocity that elicited maximal V˙O2 (V˙O2max) (ITrun), or drop jumped at 7 (ITDJ7) or 9 (ITDJ9) jumps per 15 seconds, interspersed with 15 seconds of passive recovery. V˙O2 and the time spent above 90% of V˙O2max (V˙TO2max) were collected. Peripheral fatigue was quantified via preexercise to postexercise changes in evoked potentiated quadriceps twitch (ΔQT). Power output was estimated during ITDJs using optical sensors. Results: All participants reached 90% of V˙O2max or higher during ITrun and ITDJ9, but only 11 did during ITDJ7. V˙TO2max was not different between ITrun and ITDJ9 (145 [76] vs 141 [151] s; P = .92) but was reduced during ITDJ7 (28 [26] s; P = .002). Mean ΔQT in ITDJ9 and ITDJ7 was not different (−17% [9%] vs −14% [8%]; P = .73) and greater than in ITrun (−8% [7%]; P = .001). No alteration in power output was found during ITDJs (37 [10] W·kg−1). Conclusion: Interval drop jumping at a high work rate stimulated the cardioventilatory and oxidative systems to the same extent as interval running, while the exercise-induced increase in fatigue did not compromise drop jump performance. Interval drop jumping might be a relevant strategy to get concomitant improvements in endurance and explosive performance.