You are looking at 81 - 90 of 4,444 items for :

  • Sport and Exercise Science/Kinesiology x
  • Physical Education and Coaching x
Clear All
Restricted access

Thiago S. Duarte, Danilo L. Alves, Danilo R. Coimbra, Bernardo Miloski, João C. Bouzas Marins and Maurício G. Bara Filho

Purpose: To analyze the technical and tactical training load in professional volleyball players, using subjective internal training load (session rating of perceived exertion  [SRPE]) and objective internal training load (training impulse of the heart rate [HR]) and the relationship between them. Methods: The sample was composed of 15 male professional volleyball players. They were monitored during 37 training sessions that included both technical (n = 23) and tactical (n = 14) training. Technical and training load was calculated using SRPE and training impulse of the HR. Results: Significant correlations were found between the methods in tactical (r = .616) and technical training (r = −.414). Furthermore, it was noted that technical training occurs up to 80% of HRmax (zone 3) and tactical training between 70% and 90% of HRmax (zones 3–4). Conclusions: The training impulse of the HR method has proved to be effective for training-load control during tactical training. However, it was limited compared with technical training. Thus, the use of SRPE is presented as a more reliable method in the different types of technical training in volleyball.

Restricted access

Kirsti Van Dornick and Nancy L.I. Spencer

The purpose of this study was to examine the classification experiences (perspectives and reflections) of paraswimmers. Classification provides a structure for parasport, with the goal of reducing the impact of impairment on the outcome of competition. Guided by interpretive description, nine paraswimmers ranging in swimming experience and sport class were interviewed. Reflective notes were also collected. Transcribed interviews were analyzed inductively, followed by a deductive analysis using Nordenfelt’s dignity framework. Three themes represent the findings: access, diversity, and (un)certainty. Despite several positive experiences, paraswimmers also discussed inconsistencies in the process leading them to question competition fairness and classification accuracy. These findings suggest that continued efforts to improve the classification system are required. In addition, paraswimmers and their allies (e.g., coaches) require more information about the classification process to better understand the outcomes and to effectively advocate for their needs.

Restricted access

Philip Hurst, Lieke Schipof-Godart, Florentina Hettinga, Bart Roelands and Chris Beedie

Purpose: To investigate the placebo effect of caffeine on pacing strategy and performance over 1000-m running time trials using a balanced placebo design. Methods: Eleven well-trained male middle-distance athletes performed seven 1000-m time trials (1 familiarization, 2 baseline, and 4 experimental). Experimental trials consisted of the administration of 4 randomized treatments: informed caffeine/received caffeine, informed caffeine/received placebo, informed placebo/received caffeine, and informed placebo/received placebo. Split times were recorded at 200, 400, 600, 800, and 1000 m, and peak heart rate and rating of perceived exertion were recorded at the completion of the trial. Results: Relative to baseline, participants ran faster during informed caffeine/received caffeine (d = 0.42) and informed caffeine/received placebo (d = 0.43). These changes were associated with an increased pace during the first half of the trial. No differences were shown in pacing or performance between baseline and the informed placebo/received caffeine (d = 0.21) and informed placebo/received placebo (d = 0.10). No differences were reported between treatments for peak heart rate (η 2 = .084) and rating of perceived exertion (η 2 = .009). Conclusions: The results indicate that the effect of believing to have ingested caffeine improved performance to the same magnitude as actually receiving caffeine. These improvements were associated with an increase in pace during the first half of the time trial.

Restricted access

Oliver R. Barley, Dale W. Chapman, Georgios Mavropalias and Chris R. Abbiss

Purpose: To examine the influence of fluid intake on heat acclimation and the subsequent effects on exercise performance following acute hypohydration. Methods: Participants were randomly assigned to 1 of 2 groups, either able to consume water ad libitum (n = 10; age 23 [3] y, height 1.81 [0.09] m, body mass 87 [13] kg; HAW) or not allowed fluid (n = 10; age 26 [5] y, height 1.76 [0.05] m, body mass 79 [10] kg; HANW) throughout 12 × 1.5-h passive heat-acclimation sessions. Experimental trials were completed on 2 occasions before (2 baseline trials) and 1 following the heat-acclimation sessions. These sessions involved 3 h of passive heating (45°C, 38% relative humidity) to induce hypohydration followed by 3 h of ad libitum food and fluid intake after which participants performed a repeat sled-push test to assess physical performance. Urine and blood samples were collected before, immediately, and 3 h following hypohydration to assess hydration status. Mood was also assessed at the same time points. Results: No meaningful differences in physiological or performance variables were observed between HANW and HAW at any time point. Using pooled data, mean sprint speed was significantly (P < .001) faster following heat acclimation (4.6 [0.7] s compared with 5.1 [0.8] s). Furthermore, heat acclimation appeared to improve mood following hypohydration. Conclusions: Results suggest that passive heat-acclimation protocols may be effective at improving short-duration repeat-effort performance following acute hypohydration.

Restricted access

Jozo Grgic, Filip Sabol, Sandro Venier, Ivan Mikulic, Nenad Bratkovic, Brad J. Schoenfeld, Craig Pickering, David J. Bishop, Zeljko Pedisic and Pavle Mikulic

Purpose: To explore the effects of 3 doses of caffeine on muscle strength and muscle endurance. Methods: Twenty-eight resistance-trained men completed the testing sessions under 5 conditions: no-placebo control, placebo control, and with caffeine doses of 2, 4, and 6 mg·kg−1. Muscle strength was assessed using the 1-repetition-maximum test; muscle endurance was assessed by having the participants perform a maximal number of repetitions with 60% 1-repetition maximum. Results: In comparison with both control conditions, only a caffeine dose of 2 mg·kg−1 enhanced lower-body strength (d = 0.13–0.15). In comparison with the no-placebo control condition, caffeine doses of 4 and 6 mg·kg−1 enhanced upper-body strength (d = 0.07–0.09) with a significant linear trend for the effectiveness of different doses of caffeine (P = .020). Compared with both control conditions, all 3 caffeine doses enhanced lower-body muscle endurance (d = 0.46–0.68). For upper-body muscle endurance, this study did not find significant effects of caffeine. Conclusions: This study revealed a linear trend between the dose of caffeine and its effects on upper-body strength. The study found no clear association between the dose of caffeine and the magnitude of its ergogenic effects on lower-body strength and muscle endurance. From a practical standpoint, the magnitude of caffeine’s effects on strength is of questionable relevance. A low dose of caffeine (2 mg·kg−1)—for an 80-kg individual, the dose of caffeine in 1–2 cups of coffee—may produce substantial improvements in lower-body muscle endurance with the magnitude of the effect being similar to that attained using higher doses of caffeine.

Restricted access

Seiichiro Takei, Kuniaki Hirayama and Junichi Okada

Purpose: The optimal load for maximal power output during hang power cleans (HPCs) from a mechanical perspective is the 1-repetition-maximum (1RM) load; however, previous research has reported otherwise. The present study thus aimed to investigate the underlying factors that determine optimal load during HPCs. Methods: Eight competitive Olympic weight lifters performed HPCs at 40%, 60%, 70%, 80%, 90%, 95%, and 100% of their 1RM while the ground-reaction force and bar/body kinematics were simultaneously recorded. The success criterion during HPC was set above parallel squat at the receiving position. Results: Both peak power and relative peak power were maximized at 80% 1RM (3975.7 [439.1] W, 50.4 [6.6] W/kg, respectively). Peak force, force at peak power, and relative values tended to increase with heavier loads (P < .001), while peak system velocity and system velocity at peak power decreased significantly above 80% 1RM (P = .005 and .011, respectively). There were also significant decreases in peak bar velocity (P < .001) and bar displacement (P < .001) toward heavier loads. There was a strong positive correlation between peak bar velocity and bar displacement in 7 of 8 subjects (r > .90, P < .01). The knee joint angle at the receiving position fell below the quarter-squat position above 70% 1RM. Conclusions: Submaximal loads were indeed optimal for maximal power output for HPC when the success criterion was set above the parallel-squat position. However, when the success criterion was defined as the quarter-squat position, the optimal load became the 1RM load.

Restricted access

Tiago Turnes, Rafael Penteado dos Santos, Rafael Alves de Aguiar, Thiago Loch, Leonardo Trevisol Possamai and Fabrizio Caputo

Purpose: To compare the intensity and physiological responses of deoxygenated hemoglobin breaking point ([HHb]BP) and anaerobic threshold (AnT) during an incremental test and to verify their association with 2000-m rowing-ergometer performance in well-trained rowers. Methods: A total of 13 male rowers (mean [SD] age = 24 [11] y and V˙O2peak = 63.7 [6.1] mL·kg−1·min−1) performed a step incremental test. Gas exchange, vastus lateralis [HHb], and blood lactate concentration were measured. Power output, V˙O2, and heart rate of [HHb]BP and AnT were determined and compared with each other. A 2000-m test was performed in another visit. Results: No differences were found between [HHb]BP and AnT in the power output (236 [31] vs 234 [31] W; Δ = 0.7%), 95% confidence interval [CI] 6.7%), V˙O2 (4.2 [0.5] vs 4.3 [0.4] L·min−1; Δ = −0.8%, 95% CI 4.0%), or heart rate (180 [16] vs 182 [12] beats·min−1; Δ = −1.6%, 95% CI 2.1%); however, there was high typical error of estimate (TEE) and wide 95% limits of agreement (LoA) for power output (TEE 10.7%, LoA 54.1–50.6 W), V˙O2 (TEE 5.9%, LoA −0.57 to 0.63 L·min−1), and heart rate (TEE 2.4%, LoA −9.6 to 14.7 beats·min−1). Significant correlations were observed between [HHb]BP (r = .70) and AnT (r = .89) with 2000-m mean power. Conclusions: These results demonstrate a breaking point in [HHb] of the vastus lateralis muscle during the incremental test that is capable of distinguishing rowers with different performance levels. However, the high random error would compromise the use of [HHb]BP for training and testing in rowing.

Restricted access

Alireza Rabbani, Mehdi Kargarfard, Carlo Castagna, Filipe Manuel Clemente and Craig Twist

Purpose: To investigate the relationship between accumulated global positioning system–accelerometer-based and heart rate–based training metrics and changes in high-intensity intermittent-running capacity during an in-season phase in professional soccer players. Methods: Eleven male professional players (mean [SD] age 27.2 [4.5] y) performed the 30-15 Intermittent Fitness Test (30-15IFT) before and after a 5-wk in-season training phase, and the final velocity (VIFT) was considered their high-intensity intermittent-running capacity. During all sessions, Edwards training impulse (Edwards TRIMP), Banister TRIMP, Z5 TRIMP, training duration, total distance covered, new body load (NBL), high-intensity running performance (distance covered above 14.4 km·h−1), and very-high-intensity running performance (distance covered above 19.8 km·h−1) were recorded. Results: The players’ VIFT showed a most likely moderate improvement (+4.3%, 90% confidence limits 3.1–5.5%, effect size 0.70, [0.51–0.89]). Accumulated NBL, Banister TRIMP, and Edwards TRIMP showed large associations (r = .51–.54) with changes in VIFT. A very large relationship was also observed between accumulated Z5 TRIMP (r = .72) with changes in VIFT. Large to nearly perfect within-individual relationships were observed between NBL and some of the other training metrics (ie, Edwards TRIMP, Banister TRIMP, training duration, and total distance) in 10 out of 11 players. Conclusions: Heart rate–based training metrics can be used to monitor high-intensity intermittent-running-capacity changes in professional soccer players. The dose–response relationship is also largely detected using accelerometer-based metrics (ie, NBL) to track changes in high-intensity intermittent-running capacity of professional soccer players.

Restricted access

Liam Anderson, Graeme L. Close, Matt Konopinski, David Rydings, Jordan Milsom, Catherine Hambly, John Roger Speakman, Barry Drust and James P. Morton

Maintaining muscle mass and function during rehabilitation from anterior cruciate ligament injury is complicated by the challenge of accurately prescribing daily energy intakes aligned to energy expenditure. Accordingly, we present a 38-week case study characterizing whole body and regional rates of muscle atrophy and hypertrophy (as inferred by assessments of fat-free mass from dual-energy X-ray absorptiometry) in a professional male soccer player from the English Premier League. In addition, in Week 6, we also quantified energy intake (via the remote food photographic method) and energy expenditure using the doubly labeled water method. Mean daily energy intake (CHO: 1.9–3.2, protein: 1.7–3.3, and fat: 1.4–2.7 g/kg) and energy expenditure were 2,765 ± 474 and 3,178 kcal/day, respectively. In accordance with an apparent energy deficit, total body mass decreased by 1.9 kg during Weeks 1–6 where fat-free mass loss in the injured and noninjured limb was 0.9 and 0.6 kg, respectively, yet, trunk fat-free mass increased by 0.7 kg. In Weeks 7–28, the athlete was advised to increase daily CHO intake (4–6 g/kg) to facilitate an increased daily energy intake. Throughout this period, total body mass increased by 3.6 kg (attributable to a 2.9 and 0.7 kg increase in fat free and fat mass, respectively). Our data suggest it may be advantageous to avoid excessive reductions in energy intake during the initial 6–8 weeks post anterior cruciate ligament surgery so as to limit muscle atrophy.