Browse

You are looking at 1 - 10 of 24,697 items

Restricted access

Richard R. Suminski, Robert J. Robertson, Fredric L. Goss, Silva Arslanian, Jie Kang, Sergio DaSilva, Alan C. Utter and Kenneth F. Metz

Sixteen men completed four trials at random as follows: (Trial A) performance of a single bout of resistance exercise preceded by placebo ingestion (vitamin C); (Trial B) ingestion of 1,500 mg L-arginine and 1,500 mg L-lysine, immediately followed by exercise as in Trial A; (Trial C) ingestion of amino acids as in Trial B and no exercise; (Trial D) placebo ingestion and no exercise. Growth hormone (GH) concentrations were higher at 30,60, and 90 min during the exercise trials (A and B) compared with the resting trials (C and D) (p < .05). No differences were noted in [GH] between the exercise trials. [GH] was significantly elevated during resting conditions 60 min after amino acid ingestion compared with the placebo trial. It was concluded that ingestion of 1,500 mg arginine and 1,500 mg ly sine immediately before resistance exercise does not alter exercise-induced changes in [GH] in young men. However, when the same amino acid mixture is ingested under basal conditions, the acute secretion of GH is increased.

Restricted access

Ben D. Kern, Kim C. Graber, Amelia Mays Woods and Tom Templin

Physical education teachers have been criticized for not implementing progressive or innovative instruction resulting in enhanced student knowledge and skills for lifetime participation in physical activity. Purpose: To investigate how teachers with varying dispositions toward change perceive socializing agents and teaching context as barriers to or facilitators of making pedagogical change. Methods: Thirty-two teachers completed a survey of personal dispositions toward change and participated in in-depth interviews. Results: Teachers perceived that students’ response to instructional methods and student contact time (days/week), as well as interactions with teaching colleagues and administrators influenced their ability to make pedagogical changes. Teachers with limited student contact time reported scheduling as a barrier to change, whereas daily student contact was a facilitator. Change-disposed teachers were more likely to promote student learning and assume leadership roles. Conclusion: Reform efforts should include consideration of teacher dispositions and student contact time.

Restricted access

Matthew J. Major, José L. Zavaleta and Steven A. Gard

Investigations have begun to connect leg prosthesis mechanical properties and user outcomes to optimize prosthesis designs for maximizing mobility. To date, parametric studies have focused on prosthetic foot properties, but not explicitly longitudinal stiffness that is uniquely modified through shock-absorbing pylons. The linear spring function of these devices might affect work performed on the body center of mass during walking. This study observed the effects of different levels of pylon stiffness on individual limb work of unilateral below-knee prosthesis users walking at customary and fast speeds. Longitudinal stiffness reductions were associated with minimal increase in prosthetic limb collision and push-off work, but inconsistent changes in sound limb work. These small and variable changes in limb work did not suggest an improvement in mechanical economy due to reductions in stiffness. Fast walking generated greater overall center of mass work demands across stiffness conditions. Results indicate limb work asymmetry as the prosthetic limb experienced on average 61% and 36% of collision and push-off work, respectively, relative to the sound limb. A series-spring model to estimate residuum and pylon stiffness effects on prosthesis energy storage suggested that minimal changes to limb work may be due to influences of the residual limb which dominate the system response.

Restricted access

Aaron Derouin and Jim R. Potvin

Functional knee braces are frequently prescribed by physicians to ameliorate the function of individuals with anterior cruciate ligament (ACL) injuries. These braces have been shown in the literature to potentially enhance knee stability by augmenting muscle activation patterns and the timing of muscle response to perturbations. However, very few techniques are available in the literature to quantify how those modifications in lower-limb muscle activity influence stability of the knee. The aim of the present study was to quantify the effect of an off-the-shelf functional knee brace on muscle contributions to knee joint rotational stiffness in ACL-deficient and ACL-reconstructed patients. Kinematic, electromyography, and kinetic data were incorporated into an electromyography-driven model of the lower extremity to calculate individual and total muscle contributions to knee joint rotational stiffness about the flexion–extension axis, for 4 independent variables: leg condition (contralateral uninjured, unbraced ACL injured, and braced ACL injured); knee flexion (5°–10°, 20°–25°, and 30°–35°); squat stability condition (stable and unstable); and injury status (ACL deficient and ACL reconstructed). Participants had significantly higher (P < .05, η 2 = .018) total knee joint rotational stiffness values while wearing the brace compared with the control leg. A 2-way interaction effect between stability and knee flexion (P < .05, η 2 = .040) for total joint rotational stiffness was also found.

Restricted access

Zachary M. Gillen, Lacey E. Jahn, Marni E. Shoemaker, Brianna D. McKay, Alegra I. Mendez, Nicholas A. Bohannon and Joel T. Cramer

This study measured peak force (PF), peak rate of force development (PRFD), peak power (PP), concentric impulse, and eccentric impulse during static jump (SJ), countermovement jump (CMJ), and drop jump (DJ) in youth athletes to examine changes in vertical jump power with progressively greater eccentric preloading in relation to age, maturity, and muscle mass. Twenty-one males ranging from 6 to 16 years old performed the following vertical jumps in a random order: SJ, CMJ, and DJ from drop heights of 20, 30, and 40 cm (DJ20, DJ30, and DJ40, respectively). Measurements included PF, PRFD, PP, eccentric impulse, and concentric impulse for each vertical jump condition. Maturity offset was calculated, while ultrasound images quantified thigh muscle cross-sectional area (CSA). PF and PRFD increased from CMJ to DJ20. PP increased from SJ to CMJ. Concentric impulse remained unchanged, but eccentric impulse increased systematically from across jumps. The change in PP from SJ to CMJ was correlated with age, height, weight, maturity offset, and CSA. The CMJ resulted in the greatest concentric PP with the least amount of eccentric preloading. The inability of young athletes to translate the energy absorbed during the eccentric phase of the stretch-shortening cycle of DJs may be influenced by growth and development.

Open access

Mhairi K. MacLean and Daniel P. Ferris

The authors tested 4 young healthy subjects walking with a powered knee exoskeleton to determine if it could reduce the metabolic cost of locomotion. Subjects walked with a backpack loaded and unloaded, on a treadmill with inclinations of 0° and 15°, and outdoors with varied natural terrain. Participants walked at a self-selected speed (average 1.0 m/s) for all conditions, except incline treadmill walking (average 0.5 m/s). The authors hypothesized that the knee exoskeleton would reduce the metabolic cost of walking uphill and with a load compared with walking without the exoskeleton. The knee exoskeleton reduced metabolic cost by 4.2% in the 15° incline with the backpack load. All other conditions had an increase in metabolic cost when using the knee exoskeleton compared with not using the exoskeleton. There was more variation in metabolic cost over the outdoor walking course with the knee exoskeleton than without it. Our findings indicate that powered assistance at the knee is more likely to decrease the metabolic cost of walking in uphill conditions and during loaded walking rather than in level conditions without a backpack load. Differences in positive mechanical work demand at the knee for varying conditions may explain the differences in metabolic benefit from the exoskeleton.

Restricted access

Amy R. Lewis, William S.P. Robertson, Elissa J. Phillips, Paul N. Grimshaw and Marc Portus

For the wheelchair racing population, it is uncertain whether musculoskeletal models using the maximum isometric force-generating capacity of nonathletic, able-bodied individuals are appropriate, as few anthropometric parameters for wheelchair athletes are reported in the literature. In this study, a sensitivity analysis was performed in OpenSim, whereby the maximum isometric force-generating capacity of muscles was adjusted in 25% increments to literature-defined values between scaling factors of 0.25x and 4.0x for 2 elite athletes, at 3 speeds representative of race conditions. Convergence of the solution was used to assess the results. Artificially weakening a model presented unrealistic values, while artificially strengthening a model excessively (4.0x) demonstrated physiologically invalid muscle force values. The ideal scaling factors were 1.5x and 1.75x for each of the athletes, respectively, as was assessed through convergence of the solution. This was similar to the relative difference in limb masses between dual-energy X-Ray absorptiometry data and anthropometric data in the literature (1.49x and 1.70x), suggesting that dual-energy X-ray absorptiometry may be used to estimate the required scaling factors. The reliability of simulations for elite wheelchair racing athletes can be improved by appropriately increasing the maximum isometric force-generating capacity of muscles.

Restricted access

Eric Foch and Clare E. Milner

It is unknown if female runners who have sustained multiple iliotibial band syndrome occurrences run differently compared with runners who developed the injury once or controls. Therefore, the purpose of this study was to determine if differences existed in coordination patterns and coordination variability among female runners with recurrent iliotibial band syndrome, 1 iliotibial band syndrome occurrence, and controls. Overground running trials were collected for 36 female runners (n = 18 controls). Lower extremity coordination patterns were examined during running via a vector coding analysis. Coordination variability was calculated via the ellipse area method. Separate 1-way (group) Kruskal–Wallis tests were performed to compare each coordination pattern and coordination variability. Lower extremity coordination between frontal plane hip–transverse plane hip, frontal plane pelvis–frontal plane thigh, and frontal plane thigh–transverse plane shank was similar among groups and so may not be related to the risk of iliotibial band syndrome. Runners with 1 iliotibial band syndrome occurrence demonstrated greater coordination variability for 2 of 3 couplings compared with both controls and runners with recurrent iliotibial band syndrome. Thus, the number of previous injury episodes may influence coordination variability in female runners with a history of iliotibial band syndrome.

Restricted access

Danny M. Pincivero, Rachael R. Polen and Brittany N. Byrd

The objective of the present study was to examine the relationship between maximal effort force production and anthropometric measures of upper-arm volume. Thirty healthy young participants (15 women) performed 5 isokinetic concentric and eccentric maximal effort elbow flexor/extensor contractions on separate days. Measures of arm length, circumference, and skinfold/subcutaneous fat thickness were used to obtain a measure of arm volume, modeled as 2 separate right-angle frustra. Single-variable regression analyses demonstrated significant (P < .001) second-order polynomial relationships between maximal effort elbow flexor and extensor force with arm volume (r 2 = .63–.86). The major findings demonstrated that strong and positive relations between maximal force production and estimates of limb volume can be observed using nonlinear modeling and a closer geometric representation of the exercising limb.