Michel Marina, Priscila Torrado, Blai Ferrer-Uris, and Albert Busquets
Purpose: To verify whether training the iron cross (IC) with assistive devices (herdos; HIC) and added external load (LHIC) to equate the moments of force developed on the rings could be considered an intermediate step between the nonoverloaded herdos situation (HIC) and the IC performed on the rings. Methods: Relative levels of surface electromyography (sEMG) activity were normalized with respect to a standing IC before comparing gymnasts who can perform the IC on the rings (achievers) and gymnast who cannot (nonachievers) in the 2 herdos conditions (HIC and LHIC). Seven muscles were chosen for sEMG analysis, namely, pectoralis major (PM), latissimus dorsi, teres major, lower trapezius, serratus anterior, biceps brachii (BB), and triceps brachii. Additionally, 3 indices were calculated to measure levels of coactivation: Elbowidx, Scapulaidx, and Shoulderidx. Results: The bigger magnitude of differences in sEMG activity among situations was found for the PM and BB (F ≥ 30.7; P < .001). When comparing the global and the PM, teres major, BB, and triceps brachii activity across groups, nonachievers activated their musculature to a greater extent than the achievers independently of the herdos situation (P ≤ .046). Achievers’ Elbowidx was the only index that was significantly higher (P ≤ .005) in the IC in comparison to LHIC and HIC. Conclusion: sEMG activity of PM and BB was particularly sensitive between situations, independently of the level of achievement. We recommend training the IC by adding external load in the herdos situation to increase muscle activity to levels closer to the rings situation but avoiding the potential factor of injuries.
Marcos Quintana-Cepedal, Omar de la Calle, and Hugo Olmedillas
Clinical Scenario: Injuries that affect the groin region are among the most common in football players. To prevent this condition, studies have focused on strengthening the adductors, hip flexors, or abdominal muscles. Recent investigations have used an eccentric-biased exercise (Copenhagen Adduction Exercise [CAE]) that promotes functional and architectural adaptations in the muscle tissue, though its effect on injury risk reduction is unknown. Clinical Question: Can the Copenhagen Adduction Exercise prevent groin injuries in soccer players? Summary of Key Findings: The literature was searched for studies investigating the potential groin injury risk reduction effect of the CAE. (1) Three studies met the inclusion criteria and were used for this appraisal; (2) one study observed a significantly lower injury rate ratio favoring the group that used the CAE program; and (3) 2 studies found similar or higher injury rates in the intervention groups, not supporting the inclusion of the CAE as a preventative tool. Clinical Bottom Line: There is conflicting evidence that usage of the CAE is superior to not performing adductor strengthening exercises in mitigating the risk of sustaining groin injuries. Given the evidence supporting these findings, it is advisable to exercise caution when contemplating the incorporation of the CAE into training regimens aimed at preventing groin injuries. Strength of Recommendation: There is Grade B evidence to suggest that inclusion of the CAE may not be associated with reduced injury rates.
Francisco J. Amaro-Gahete, María Ruiz-Ruiz, Amalia Cano-Nieto, Guillermo Sanchez-Delgado, Juan M. Alcantara, Francisco M. Acosta, Idoia Labayen, Francisco B. Ortega, and Jonatan R. Ruiz
The present study aimed to investigate the effect of a 24-week aerobic + resistance training programs at moderate versus vigorous intensity on body composition, and the persistence of the changes after a 10-month free-living period, in young untrained adults. This report is based on a secondary analysis from the activating brown adipose tissue through exercise (ACTIBATE) single-center unblinded randomized controlled trial. A total of 144 young adults (65.6% women) aged 18–25 years were randomly allocated to three different groups: (a) aerobic + resistance exercise training program based on the international physical activity recommendations at vigorous intensity (Ex-Vigorous group), (b) at moderate intensity (Ex-Moderate group), and (c) control group (no exercise). Body composition outcomes were determined by a dual-energy X-ray absorptiometry scanner. Both Ex-Vigorous and Ex-Moderate decreased body weight, fat mass, and visceral adipose tissue mass in a similar manner (all p < .04). After a 10-month free-living period, these parameters returned to baseline levels in both exercise groups (all ps < .03). No differences between the exercise groups and the control group were noted in lean mass changes (all ps > .1). A 24-week aerobic + resistance training intervention based on the international physical activity recommendations was enough to improve body weight, fat mass, and visceral adipose tissue mass in untrained young adults, independently of the exercise intensity (moderate vs. vigorous).
International Journal of Sports Physiology and Performance
Giorgos P. Paradisis, Elias Zacharogiannis, Athanassios Bissas, and Brian Hanley
Purpose: Advanced footwear technology is prevalent in distance running, with research focusing on these “super shoes” in competitive athletes, with less understanding of their value for slower runners. The aim of this study was to compare physiological and biomechanical variables between a model of super shoes (Saucony Endorphin Speed 2) and regular running shoes (Saucony Cohesion 13) in recreational athletes. Methods: We measured peak oxygen uptake (VO2peak) in 10 runners before testing each subject 4 times in a randomly ordered crossover design (ie, Endorphin shoe or Cohesion shoe, running at 65% or 80% of velocity at VO2peak [vVO2peak]). We recorded video data using a high-speed camera (300 Hz) to calculate vertical and leg stiffnesses. Results: 65% vVO2peak was equivalent to a speed of 9.4 km·h−1 (0.4), whereas 80% vVO2peak was equivalent to 11.5 km·h−1 (0.5). Two-way mixed-design analysis of variance showed that oxygen consumption in the Endorphin shoe was 3.9% lower than in the Cohesion shoe at 65% vVO2peak, with an interaction between shoes and speed (P = .020) meaning an increased difference of 5.0% at 80% vVO2peak. There were small increases in vertical and leg stiffnesses in the Endorphin shoes (P < .001); the Endorphin shoe condition also showed trivial to moderate differences in step length, step rate, contact time, and flight time (P < .001). Conclusions: There was a physiological benefit to running in the super shoes even at the slower speed. There were also spatiotemporal and global stiffness improvements indicating that recreational runners benefit from wearing super shoes.