Browse

You are looking at 1 - 10 of 28,607 items for :

Clear All
Restricted access

Beatriz Rael, Nuria Romero-Parra, Víctor M. Alfaro-Magallanes, Laura Barba-Moreno, Rocío Cupeiro, Xanne Janse de Jonge, Ana B. Peinado and on Behalf of the IronFEMME Study Group

Purpose: The influence of female sex hormones on body fluid regulation and metabolism homeostasis has been widely studied. However, it remains unclear whether hormone fluctuations throughout the menstrual cycle (MC) and with oral contraceptive (OC) use affect body composition (BC). Thus, the aim of this study was to investigate BC over the MC and OC cycle in well-trained females. Methods: A total of 52 eumenorrheic and 33 monophasic OC-taking well-trained females participated in this study. Several BC variables were measured through bioelectrical impedance analysis 3 times in the eumenorrheic group (early follicular phase, late follicular phase, and midluteal phase) and on 2 occasions in the OC group (withdrawal phase and active pill phase). Results: Mixed linear model tests reported no significant differences in the BC variables (body weight, body mass index, basal metabolism, fat mass, fat-free mass, and total body water) between the MC phases or between the OC phases (P > .05 for all comparisons). Trivial and small effect sizes were found for all BC variables when comparing the MC phases in eumenorrheic females, as well as for the OC cycle phases. Conclusions: According to the results, sex hormone fluctuations throughout the menstrual and OC cycle do not influence BC variables measured by bioelectrical impedance in well-trained females. Therefore, it seems that bioimpedance analysis can be conducted at any moment of the cycle, both for eumenorrheic women and women using OC.

Restricted access

Faezeh Mohammadi Sanjani, Abbas Bahram, Moslem Bahmani, Mina Arvin and John van der Kamp

It has been shown that texting degrades driving performance, but the extent to which this is mediated by the driver’s age and postural stability has not been addressed. Hence, the present study examined the effects of texting, sitting surface stability, and balance training in young and older adults’ driving performance. Fifteen young (mean age = 24.3 years) and 13 older (mean age = 62.8 years) participants were tested in a driving simulator with and without texting on a smartphone and while sitting on a stable or unstable surface (i.e., a plastic wobble board), before and after a 30-min sitting balance training. Analyses of variance showed that texting deteriorated driving performance but irrespective of sitting surface stability. Balance training decreased the negative effects of texting on driving, especially in older adults. Perceived workload increased when drivers were texting, and balance training reduced perceived workload. Perceived workload was higher while sitting on the unstable surface, but less so after balance training. Path analyses showed that the effects on driving performance and perceived workload were (indirectly) associated with changes in postural stability (i.e., postural sway). The study confirms that texting threatens safe driving performance by challenging postural stability, especially in older adults. The study also suggests that it is important to further investigate the role balance training can play in reducing these negative effects of texting.

Restricted access

Fabio Bertapelli, Stamatis Agiovlasitis, Robert W. Motl, Roberto A. Soares, Marcos M. de Barros-Filho, Wilson D. do Amaral-Junior and Gil Guerra-Junior

The purpose of this study was to develop and cross-validate an equation for estimating percentage body fat (%BF) from body mass index and other potential independent variables among young persons with intellectual disability. Participants were 128 persons with intellectual disability (62 women; age 16–24 years) split between development (n = 98) and cross-validation (n = 30) samples. Dual-energy X-ray absorptiometry served as the reference method for %BF. An equation including 1/body mass index and sex (0 = male; 1 = female) was highly accurate in estimating %BF (p < .001; R 2 = .82; standard error of estimate  = 5.22%). Mean absolute and root mean square errors were small (3.1% and 3.9%, respectively). A Bland–Altman plot indicated nearly zero mean difference between actual and predicted %BF with modest 95% confidence intervals. The prediction equation was %BF = 56.708 − (729.200 × [1/body mass index]) + (12.134 × sex). Health care professionals may use the prediction equation for monitoring %BF among young people with intellectual disability.

Open access

Chung-Ju Huang, Hsin-Yu Tu, Ming-Chun Hsueh, Yi-Hsiang Chiu, Mei-Yao Huang and Chien-Chih Chou

This study examined the effects of acute aerobic exercise on sustained attention and discriminatory ability of children with and without learning disabilities (LD). Fifty-one children with LD and 49 typically developing children were randomly assigned to exercise or control groups. The participants in the exercise groups performed a 30-min session of moderate-intensity aerobic exercise, whereas the control groups watched a running/exercise-related video. Neuropsychological tasks, the Daueraufmerksamkeit sustained attention test, and the determination tests were assessed before and after each treatment. Exercise significantly benefited performance in sustained attention and discriminatory ability, particularly in higher accuracy rate and shorter reaction time. In addition, the LD exercise group demonstrated greater improvement than the typically developing exercise group. The findings suggest that the acute aerobic exercise influenced the sustained attention and the discriminatory function in children with LD by enhancing regulation of mental states and allocation of attentional resources.