You are looking at 1 - 10 of 13,669 items for :

  • Sport and Exercise Science/Kinesiology x
Clear All
Restricted access

Richard R. Suminski, Robert J. Robertson, Fredric L. Goss, Silva Arslanian, Jie Kang, Sergio DaSilva, Alan C. Utter and Kenneth F. Metz

Sixteen men completed four trials at random as follows: (Trial A) performance of a single bout of resistance exercise preceded by placebo ingestion (vitamin C); (Trial B) ingestion of 1,500 mg L-arginine and 1,500 mg L-lysine, immediately followed by exercise as in Trial A; (Trial C) ingestion of amino acids as in Trial B and no exercise; (Trial D) placebo ingestion and no exercise. Growth hormone (GH) concentrations were higher at 30,60, and 90 min during the exercise trials (A and B) compared with the resting trials (C and D) (p < .05). No differences were noted in [GH] between the exercise trials. [GH] was significantly elevated during resting conditions 60 min after amino acid ingestion compared with the placebo trial. It was concluded that ingestion of 1,500 mg arginine and 1,500 mg ly sine immediately before resistance exercise does not alter exercise-induced changes in [GH] in young men. However, when the same amino acid mixture is ingested under basal conditions, the acute secretion of GH is increased.

Restricted access

Ina M. Tarkka, Pekka Hautasaari, Heidi Pesonen, Eini Niskanen, Mirva Rottensteiner, Jaakko Kaprio, Andrej M. Savić and Urho M. Kujala

Background: Physical activity (PA) is said to be beneficial to many bodily functions. However, the effects of PA in the brain are still inadequately known. The authors aimed to uncover possible brain modulation linked with PA. Here, they combine 4 of their studies with monozygotic twins, who were within-pair discordant in PA for a minimum of 1 year. Methods: The authors performed brain imaging, brain electrophysiology, and cardiovascular and body composition assessments, and collected questionnaire-based data. The present synopsis elucidates the differences associated with differing PA history in conditions without genetic variability. They present new structural and electrophysiological results. Participants, healthy, 45 male monozygotic twins (mean age 34.5 [1.5] y) differed in aerobic capacity and fat percentage (P < .001). Results: More active co-twins showed larger gray matter volumes in striatal, prefrontal, and hippocampal regions, and smaller gray matter volumes in the anterior cingulate area than less active co-twins. Functionally, visual and somatosensory automatic change detection processes differed between more and less active co-twins. Conclusions: In monozygotic twins, who differed in their PA history, differences were observed in identifiable anatomic brain locations involved with motor control and memory functions, as well as in electrophysiological measures detecting brain’s automatic processes. Better aerobic capacity may modify brain morphology and sensory function.

Restricted access

Xiaomin Sun, Zhen-Bo Cao, Kumpei Tanisawa, Satomi Oshima and Mitsuru Higuchi

Low serum 25-hydroxyvitamin D [25(OH)D] concentrations are associated with a high risk of insulin resistance and Type 2 diabetes mellitus in adults. However, it is unknown whether this is the case for American collegiate football and rugby football athletes. This study investigated the associations between serum 25(OH)D concentrations and glucose profiles in male collegiate football athletes. Thirty-four collegiate athletes (13 American football players and 21 rugby football players) aged 21 years were recruited. Their body fat percent and visceral fat area were measured by dual-energy X-ray absorptiometry and magnetic resonance imaging, respectively. The participants completed an oral glucose tolerance test (75 g glucose) with venous blood samples obtained at time points 0, 30, 60, 90, and 120 min for the determination of plasma glucose and serum insulin concentrations. Fasting serum 25(OH)D concentrations were also measured. The prevalence of vitamin D deficiency and insufficiency was 17.6% and 58.8%, respectively. The serum 25(OH)D concentrations were negatively associated with the increments in the areas under the curve (iAUC) for glucose (r = −.429, p = .011) and were borderline significantly correlated with the Matsuda index (r = −.303, p = .082). No relationships were observed between the serum 25(OH)D concentrations and other glucose profiles. Multiple stepwise regression analysis of glucose iAUC concentrations as the dependent variable indicated that the serum 25(OH)D concentrations, but not body fat indicators, were independently associated with glucose iAUC (β = −0.390, p = .025). The serum 25(OH)D concentrations were only an independent predictor for glucose iAUC in male collegiate football athletes, suggesting that increased 25(OH)D concentrations would be helpful for maintaining glucose homeostasis.

Restricted access

Ben Desbrow, Katelyn Barnes, Gregory R. Cox, Elizaveta Iudakhina, Danielle McCartney, Sierra Skepper, Caroline Young and Chris Irwin

This study assessed voluntary dietary intake when different beverages were provided within a recovery area following recreational exercise. Participants completed two 10-km runs 1 week apart. Immediately after the first run, “beer drinkers” (n = 54; mean ± SD: age = 23.9 ± 5.8 years, body mass [BM] = 76 ± 13 kg) randomly received low-alcohol beer (Hahn Ultra® [Lion Co.], 0.9% alcohol by volume) or sports drink (SD; Gatorade® [PepsiCo]), whereas “nonbeer drinkers” (n = 78; age = 21.8 ± 2.2 years, BM = 71 ± 13 kg) received water or SD. Participants remained in a recovery area for 30–60 min with fluid consumption monitored. The following week, participants received the alternate beverage. Participants recorded all food/fluid consumed for the remainder of both trial days (diary and photographs). Fluid balance was assessed via BM change and urine specific gravity. Paired t tests were used to assess differences in hydration and dietary variables. No differences were observed in preexercise urine specific gravity (∼1.01) or BM loss (∼2%) between intervention groups (ps > .05). Water versus SD: No difference in acute fluid intake was noted (water = 751 ± 259 ml, SD = 805 ± 308 ml, p = .157). SD availability influenced total energy and carbohydrate intakes (water = 5.7 ± 2.5 MJ and 151 ± 77 g, SD = 6.5 ± 2.7 MJ and 187 ± 87 g, energy p = .002, carbohydrate p < .001). SD versus beer: SD availability resulted in greater acute fluid intake (SD = 1,047 ± 393 ml, beer = 850 ± 630 ml; p = .004), which remained evident at the end of trial days (SD = 3,337 ± 1,100 ml, beer = 2,982 ± 1,191 ml; p < .01). No differences in dietary variables were observed. Next day, urine specific gravity values were not different between water versus SD. However, a small difference was detected between SD versus beer (SD = 1.021 ± 0.009, beer = 1.016 ± 0.008, p = .002). Consuming calorie-containing drinks postexercise appears to increase daily energy and carbohydrate intake but has minimal impact on next-day hydration.

Restricted access

Nils Haller, Tobias Ehlert, Sebastian Schmidt, David Ochmann, Björn Sterzing, Franz Grus and Perikles Simon

Purpose: Player monitoring in elite sport settings is becoming increasingly important. Questionnaire-based methods and biomarkers such as circulating, cell-free DNA (cfDNA) are suggested for load monitoring. cfDNA concentrations were shown to increase depending on total distance covered in football and were associated with overtraining in weight lifters. Thus, the objective of this study was to examine whether cfDNA is feasible as a monitoring tool in elite football players. Methods: Capillary blood samples from 22 male elite football players were collected over 4 mo of a regular season. Sampling was conducted the day before, 1 day after, or several days after regular-season games and/or training. In addition, each player filled in a visual analogue scale (VAS) questionnaire including the items “general perceived exertion,” “muscular fatigue,” and “mental fatigue.” Performance during training and games was tracked by the Catapult system and with the OPTA system, respectively. Results: cfDNA values were significantly elevated in players the day after regular-season games (1.4-fold; P = .0004) in line with the scores of the VAS. Both parameters showed significantly higher values during midweek-game weeks. cfDNA concentrations correlated with training data, and VAS was correlated with the tracking of the season games. However, cfDNA and VAS did not correlate with each other. Conclusions: cfDNA concentrations at rest and VAS scores are influenced by previous load in professional football players. Future studies will reveal whether cfDNA might serve as a practically applicable marker for player load in football players.

Restricted access

Heidi R. Thornton, Jace A. Delaney, Grant M. Duthie and Ben J. Dascombe

In professional team sports, the collection and analysis of athlete-monitoring data are common practice, with the aim of assessing fatigue and subsequent adaptation responses, examining performance potential, and minimizing the risk of injury and/or illness. Athlete-monitoring systems should be underpinned by appropriate data analysis and interpretation, to enable the rapid reporting of simple and scientifically valid feedback. Using the correct scientific and statistical approaches can improve the confidence of decisions made from athlete-monitoring data. However, little research has discussed and proposed an outline of the process involved in the planning, development, analysis, and interpretation of athlete-monitoring systems. This review discusses a range of methods often employed to analyze athlete-monitoring data to facilitate and inform decision-making processes. There is a wide range of analytical methods and tools that practitioners may employ in athlete-monitoring systems, as well as several factors that should be considered when collecting these data, methods of determining meaningful changes, and various data-visualization approaches. Underpinning a successful athlete-monitoring system is the ability of practitioners to communicate and present important information to coaches, ultimately resulting in enhanced athletic performance.

Restricted access

ZáNean McClain, E. Andrew Pitchford and Jill Pawlowski

Restricted access

Carl Persson, Flinn Shiel, Mike Climstein and James Furness

Dual-energy X-ray absorptiometry is a commonly used clinical assessment tool for body composition and bone mineral density, which is gaining popularity in athletic cohorts. Results from body composition scans are useful for athletic populations to track training and nutritional interventions, while bone mineral density scans are valuable for athletes at risk of developing stress fractures due to low bone mineral density. However, no research has ascertained if a novice technician (accredited but not experienced) could produce similar results to an experienced technician. Two groups of recreational athletes were scanned, one by an experienced technician, one by a novice technician. All participants were scanned twice with repositioning between scans. The experienced technician’s reliability (intraclass correlation coefficient = .989–.998; percentage change in mean = −0.01 to 0.10), precision (typical error as coefficient of variation percentage = 0.01–0.47; SEM% = 0.61–1.39), and sensitivity to change (smallest real difference percentage = 1.70–3.85) were similar; however, superior to those of the novice technician. The novice technician results were reliability (intraclass correlation coefficient = .985–.997; percentage change in mean = −0.03 to 0.23), precision (typical error as coefficient of variation percentage = 0.03–0.75; SEM% = 1.06–2.12), and sensitivity to change (smallest real difference percentage = 2.73–5.86). Extensive experience, while valuable, is not a necessary requirement to produce quality results when undertaking whole-body dual-energy X-ray absorptiometry scanning.