Browse

You are looking at 1 - 10 of 5,452 items for :

  • Sport and Exercise Science/Kinesiology x
  • Physical Education and Coaching x
  • All content x
Clear All
Open access

Alannah K.A. McKay, Peter Peeling, David B. Pyne, Nicolin Tee, Marijke Welveart, Ida A. Heikura, Avish P. Sharma, Jamie Whitfield, Megan L. Ross, Rachel P.L. van Swelm, Coby M. Laarakkers, and Louise M. Burke

This study implemented a 2-week high carbohydrate (CHO) diet intended to maximize CHO oxidation rates and examined the iron-regulatory response to a 26-km race walking effort. Twenty international-level, male race walkers were assigned to either a novel high CHO diet (MAX = 10 g/kg body mass CHO daily) inclusive of gut-training strategies, or a moderate CHO control diet (CON = 6 g/kg body mass CHO daily) for a 2-week training period. The athletes completed a 26-km race walking test protocol before and after the dietary intervention. Venous blood samples were collected pre-, post-, and 3 hr postexercise and measured for serum ferritin, interleukin-6, and hepcidin-25 concentrations. Similar decreases in serum ferritin (17–23%) occurred postintervention in MAX and CON. At the baseline, CON had a greater postexercise increase in interleukin-6 levels after 26 km of walking (20.1-fold, 95% CI [9.2, 35.7]) compared with MAX (10.2-fold, 95% CI [3.7, 18.7]). A similar finding was evident for hepcidin levels 3 hr postexercise (CON = 10.8-fold, 95% CI [4.8, 21.2]; MAX = 8.8-fold, 95% CI [3.9, 16.4]). Postintervention, there were no substantial differences in the interleukin-6 response (CON = 13.6-fold, 95% CI [9.2, 20.5]; MAX = 11.2-fold, 95% CI [6.5, 21.3]) or hepcidin levels (CON = 7.1-fold, 95% CI [2.1, 15.4]; MAX = 6.3-fold, 95% CI [1.8, 14.6]) between the dietary groups. Higher resting serum ferritin (p = .004) and hotter trial ambient temperatures (p = .014) were associated with greater hepcidin levels 3 hr postexercise. Very high CHO diets employed by endurance athletes to increase CHO oxidation have little impact on iron regulation in elite athletes. It appears that variations in serum ferritin concentration and ambient temperature, rather than dietary CHO, are associated with increased hepcidin concentrations 3 hr postexercise.

Open access
Restricted access

Hannah F. Sangan, James G. Hopker, Glen Davison, and Shaun J. McLaren

Purpose: To assess the reliability and construct validity of a self-paced, submaximal run test (SRTRPE) for monitoring aerobic fitness. The SRTRPE monitors running velocity (v), heart rate (HRex), and blood lactate concentration (B[La]), during three 3-minute stages prescribed by ratings of perceived exertion (RPEs) of 10, 13, and 17. Methods: Forty (14 female) trained endurance runners completed a treadmill graded exercise test for the determination of maximal oxygen consumption (VO2max), v at VO2max (vVO2max), and v at 2 mmol·L−1 (vLT1) and 4 mmol·L−1 (vLT2) B[La]. Within 7 days, participants completed the SRTRPE. Convergent validity between the SRTRPE and graded exercise test parameters was assessed through linear regression. Eleven participants completed a further 2 trials of the SRTRPE within a 72-hour period to quantify test–retest reliability. Results: There were large correlations between v at all stages of the SRTRPE and VO2max (r range = .57–.63), vVO2max (.50–.66), and vLT2 (.51–.62), with vRPE 17 displaying the strongest associations (r > .60). Intraclass correlation coefficients (ICC3,1) were moderate to high for parameters v (range = .76–.84), HRex (.72–.92), and %HRmax (.64–.89) at all stages of the SRTRPE. The corresponding coefficients of variation were 2.5% to 5.6%. All parameters monitored at intensity RPE 17 displayed the greatest reliability. Conclusions: The SRTRPE was shown to be a valid and reliable test for monitoring parameters associated with aerobic fitness, displaying the potential of this submaximal, time-efficient test to monitor responses to endurance training.

Restricted access

ZáNean McClain, Jill Pawlowski, and Daniel W. Tindall

Restricted access

Annemiek J. Roete, Marije T. Elferink-Gemser, Ruby T.A. Otter, Inge K. Stoter, and Robert P. Lamberts

Purpose: The aim of this brief review was to present an overview of noninvasive markers in trained to professional endurance athletes that can reflect a state of functional overreaching. Methods: A systematic literature search was conducted in the PubMed, Scopus, and PsycINFO databases. After screening 380 articles, 12 research papers were included for the systematic review. Results: Good consensus was found between the different papers in which noninvasive parameters were able to reflect a state of functional overreaching. Changes in power output (PO), heart rate (HR; [sub]maximal and HR recovery), rating of perceived exertion, and scores in the Daily Analysis of Life Demands for Athletes (DALDA) and/or Profile of Mood States (POMS) were shown to be able to reflect functional overreaching, whereas changes in maximal oxygen uptake and HR-variability parameters were not. Conclusion: Functional overreaching within a maximal performance test was characterized by a decrease in peak PO and a lower maximum HR, whereas a lower mean PO and a lower HR were observed during time trials. Changes in parameters during a standardized submaximal test when functionally overreached were characterized by a higher PO at a fixed HR or a lower HR at a fixed intensity, higher rating of perceived exertion, and a faster HR recovery. Although both the DALDA and POMS were able to reflect functional overreaching, the POMS was not able to differentiate this response from acute fatigue, which makes it unsuitable for accurately monitoring functional overreaching.

Restricted access

Elliott C.R. Hall, Sandro S. Almeida, Shane M. Heffernan, Sarah J. Lockey, Adam J. Herbert, Peter Callus, Stephen H. Day, Charles R. Pedlar, Courtney Kipps, Malcolm Collins, Yannis P. Pitsiladis, Mark A. Bennett, Liam P. Kilduff, Georgina K. Stebbings, Robert M. Erskine, and Alun G. Williams

Purpose: Genetic polymorphisms have been associated with the adaptation to training in maximal oxygen uptake (V˙O2max). However, the genotype distribution of selected polymorphisms in athletic cohorts is unknown, with their influence on performance characteristics also undetermined. This study investigated whether the genotype distributions of 3 polymorphisms previously associated with V˙O2max training adaptation are associated with elite athlete status and performance characteristics in runners and rugby athletes, competitors for whom aerobic metabolism is important. Methods: Genomic DNA was collected from 732 men including 165 long-distance runners, 212 elite rugby union athletes, and 355 nonathletes. Genotype and allele frequencies of PRDM1 rs10499043 C/T, GRIN3A rs1535628 G/A, and KCNH8 rs4973706 T/C were compared between athletes and nonathletes. Personal-best marathon times in runners, as well as in-game performance variables and playing position, of rugby athletes were analyzed according to genotype. Results: Runners with PRDM1 T alleles recorded marathon times ∼3 minutes faster than CC homozygotes (02:27:55 [00:07:32] h vs 02:31:03 [00:08:24] h, P = .023). Rugby athletes had 1.57 times greater odds of possessing the KCNH8 TT genotype than nonathletes (65.5% vs 54.7%, χ 2 = 6.494, P = .013). No other associations were identified. Conclusions: This study is the first to demonstrate that polymorphisms previously associated with V˙O2max training adaptations in nonathletes are also associated with marathon performance (PRDM1) and elite rugby union status (KCNH8). The genotypes and alleles previously associated with superior endurance-training adaptation appear to be advantageous in long-distance running and achieving elite status in rugby union.