Browse

You are looking at 1 - 10 of 32,227 items for

  • Refine by Access: All Content x
Clear All
Restricted access

Marco Giurgiu, Carina Nigg, Janis Fiedler, Irina Timm, Ellen Rulf, Johannes B.J. Bussmann, Claudio R. Nigg, Alexander Woll, and Ulrich W. Ebner-Priemer

Purpose: To raise attention to the quality of published validation protocols while comparing (in)consistencies and providing an overview on wearables, and whether they show promise or not. Methods: Searches from five electronic databases were included concerning the following eligibility criteria: (a) laboratory conditions with humans (<18 years), (b) device outcome must belong to one dimension of the 24-hr physical behavior construct (i.e., intensity, posture/activity type outcomes, biological state), (c) must include a criterion measure, and (d) published in a peer-reviewed English language journal between 1980 and 2021. Results: Out of 13,285 unique search results, 123 articles were included. In 86 studies, children <13 years were recruited, whereas in 26 studies adolescents (13–18 years) were recruited. Most studies (73.2%) validated an intensity outcome such as energy expenditure; only 20.3% and 13.8% of studies validated biological state or posture/activity type outcomes, respectively. We identified 14 wearables that had been used to validate outcomes from two or three different dimensions. Most (n = 72) of the identified 88 wearables were only validated once. Risk of bias assessment resulted in 7.3% of studies being classified as “low risk,” 28.5% as “some concerns,” and 71.5% as “high risk.” Conclusion: Overall, laboratory validation studies of wearables are characterized by low methodological quality, large variability in design, and a focus on intensity. No identified wearable provides valid results across all three dimensions of the 24-hr physical behavior construct. Future research should more strongly aim at biological state and posture/activity type outcomes, and strive for standardized protocols embedded in a validation framework.