Browse

You are looking at 1 - 10 of 16,471 items for :

  • Sport and Exercise Science/Kinesiology x
Clear All
Restricted access

Jordan L. Fox, Robert Stanton, Aaron T. Scanlan, Masaru Teramoto and Charli Sargent

Purpose: To investigate the associations between sleep and competitive performance in basketball. Methods: A total of 7 semiprofessional, male players were monitored across the in-season. On nights prior to competition, sleep duration and quality were assessed using actigraphs and sleep diaries. The data were accumulated over 1 (night 1), 2 (nights 1–2 combined), 3 (nights 1–3 combined), and 4 (nights 1–4 combined) nights prior to competition. Performance was reported as player statistics (field goal and free-throw accuracy, rebounds, assists, steals, blocks, and turnovers) and composite performance statistics (offensive rating, defensive rating, and player efficiency). Linear regression analyses with cluster-robust standard errors using bootstrapping (1000 replications) were performed to quantify the association between sleep and performance. Results: The night before competition, subjective sleep quality was positively associated with offensive rating and player efficiency (P < .05). Conclusions: Strategies to increase subjective sleep quality the night before competition should be considered to increase the likelihood of successful in-game performance, given its association with composite performance metrics.

Restricted access

Jessica A. Calderbank, Paul Comfort and John J. McMahon

Purpose: The aim of the current study was to investigate the relationship between dive distance (DD) and countermovement jump (CMJ) height, track start CMJ height, countermovement broad jump (CMBJ) distance, track start broad jump distance, and isometric midthigh pull peak force and relative peak force. Methods: A total of 27 (11 female and 16 male) regional-national-international-standard swimmers (mean [SD]; age = 19.5 [5.5] y; mass = 69.3 [10.5] kg; height = 1.77 [0.09] m) performed 3 trials of a track start dive, CMJ, track start CMJ, CMBJ, track start broad jump, and isometric midthigh pull. Results: Data were separated into pooled (females and males combined), females, and males. Large to very large correlations were found between DD and all variables tested for pooled data (r = .554–.853, P < .001–.008), with DD-CMBJ displaying the highest correlation (r = .853, P < .001). CMBJ accounted for 70% of the variance in DD. Females demonstrated moderate nonsignificant correlations between DD isometric midthigh pull (r = .379, P < .125). Males demonstrated very large significant correlations between DD-CMJ (r = .761, P < .001). Conclusions: DD demonstrated strong correlations with jump performances and multijoint isometric force production in pooled data. Males showed stronger correlations than females due to being stronger and being able to perform the jumping/strength tasks to a higher standard. Enhanced jump performance and increased maximal force production may, therefore, enhance DD in swimmers.

Restricted access

Luca Pollastri, Gabriele Gallo, Milena Zucca, Luca Filipas, Antonio La Torre, Ugo Riba, Luigi Molino and Elisabetta Geda

Background: The effects of anodal transcranial direct-current stimulation (tDCS) on endurance exercise performance are not yet fully understood. Different stimulated areas and low focality of classical tDCS technique may have led to discordant results. Purpose: This study investigated the effect of a bilateral anodal high-definition tDCS (HD-tDCS) of the dorsolateral prefrontal cortex on the cycling time-trial (TT) performance and physiological and perceptual response at moderate intensity in elite cyclists. Methods: A total of 8 elite cyclists (maximal oxygen consumption: 72.2 [4.3] mL·min−1·kg−1) underwent in a double-blind, counterbalanced, and randomized order the experimental treatment (HD-tDCS) or control treatment (SHAM). After 20 minutes of receiving either HD-tDCS on the dorsolateral prefrontal cortex (F3 and F4) or SHAM stimulation, the participants completed a constant-load trial (CLT) at 75% of the second ventilatory threshold. Thereafter, they performed a simulated 15-km TT. The ratings of perceived exertion, heart rate, cadence,  oxygen consumption, and respiratory exchange ratio were recorded during the CLT; the ratings of perceived exertion and heart rate were recorded during the TT. Results: The total time to complete the TT was 1.3% faster (HD-tDCS: 1212 [52] s vs SHAM: 1228 [56] s; P = .04) and associated with a higher heart rate (P < .001) and a tendency toward higher mean power output (P = .05). None of the physiological and perceptual variables measured during the CLT highlighted differences between the HD-tDCS and SHAM condition. Conclusions: The findings suggest that bilateral HD-tDCS on the dorsolateral prefrontal cortex improves cycling TT performance without altering the physiological and perceptual response at moderate intensity, indicating that an upregulation of the prefrontal cortex could enhance endurance exercise performance.

Restricted access

ZáNean McClain, Daniel W. Tindall and Jill Pawlowski

Open access

Paddy C. Dempsey, Christine M. Friedenreich, Michael F. Leitzmann, Matthew P. Buman, Estelle Lambert, Juana Willumsen and Fiona Bull

Background: In 2020, the World Health Organization (WHO) released global guidelines on physical activity (PA) and sedentary behavior, for the first time providing population-based recommendations for people living with selected chronic conditions. This article briefly presents the guidelines, related processes, and evidence and, importantly, considers how they may be used to support research, practice, and policy. Methods: A brief overview of the scope, agreed methods, selected chronic conditions (adults living with cancer, hypertension, type 2 diabetes, and human immunodeficiency virus), and appraisal of systematic review evidence on PA/sedentary behavior is provided. Methods were consistent with World Health Organization protocols for developing guidelines. Results: Moderate to high certainty evidence (varying by chronic condition and outcome examined) supported that PA can reduce the risk of disease progression or premature mortality and improve physical function and quality of life in adults living with chronic conditions. Direct evidence on sedentary behavior was lacking; however, evidence extrapolated from adult populations was considered applicable, safe, and likely beneficial (low certainty due to indirectness). Conclusions: Clinical and public health professionals and policy makers should promote the World Health Organization 2020 global guidelines and develop and implement services and programs to increase PA and limit sedentary behavior in adults living with chronic conditions.

Restricted access

Marlene Kritz, Cecilie Thøgersen-Ntoumani, Barbara Mullan, Afroditi Stathi and Nikos Ntoumanis

The authors examined whether purposeful walking with peers at least once a week contributes to better behavioral and health outcomes in older adults than primarily walking alone. The authors used a longitudinal cohort design and recruited participants aged 60 years and older (N = 136) at the start of a 16-week walking intervention. Participants who walked on average at least once a week in the final 8 weeks of the intervention were included in the analysis (N = 79; 66 females, M age [SD] = 77.73 [6.91]). The authors found that autonomous motivation, walking self-efficacy, functional capacity, body fat, and physical activity improved more in the walking with peers group compared with the walking alone group, after controlling for whether participants lived alone/with others and their health status. The results extend current literature by providing longitudinal evidence for the added benefits of regular peer-accompanied walking in older adults and highlight the importance of investing in peer-supported interventions.

Restricted access

Joseph O.C. Coyne, Robert U. Newton and G. Gregory Haff

Purpose: A simple and 2 different exponentially weighted moving average methods were used to investigate the relationships between internal training load and elite weightlifting performance. Methods: Training impulse data (sessional ratings of perceived exertion × training duration) were collected from 21 elite weightlifters (age = 26.0 [3.2] y, height = 162.2 [11.3] cm, body mass = 72.2 [23.8] kg, previous 12-mo personal best total 96.3% [2.7%] of world record total) during the 8 weeks prior to the 2016 Olympic Games qualifying competition. The amount of training modified or cancelled due to injury/illness was also collected. The training stress balance (TSB) and acute to chronic workload ratio (ACWR) were calculated with the 3 moving average methods. Along with the amount of modified training, TSB and ACWR across the moving average methods were then examined for their relationship to competitive performance. Results: There were no consistent associations between performance and training load on the day of competition. The volatility (SD) of the ACWR in the last 21 days preceding the competition was moderately correlated with performance across moving average methods (r = −.41 to .48, P = .03–.07). TSB and ACWR volatility in the last 21 days were also significantly lower for successful performers but only as a simple moving average (P = .03 and .03, g = 1.15 and 1.07, respectively). Conclusions: Practitioners should consider restricting change and volatility in an athlete’s TSB or ACWR in the last 21 days prior to a major competition. In addition, a simple moving average seemed to better explain elite weightlifting performance than the exponentially weighted moving averages in this investigation.

Restricted access

Craig Pickering and John Kiely

Purpose: The genetic influence on the attainment of elite athlete status is well established, with a number of polymorphisms found to be more common in elite athletes than in the general population. As such, there is considerable interest in understanding whether this information can be utilized to identify future elite athletes. Accordingly, the aim of this study was to compare the total genotype scores of 5 elite athletes to those of nonathletic controls, to subsequently determine whether genetic information could discriminate between these groups, and, finally, to suggest how these findings may inform debates relating to the potential for genotyping to be used as a talent-identification tool. Methods: The authors compared the total genotype scores for both endurance (68 genetic variants) and speed-power (48 genetic variants) elite athlete status of 5 elite track-and-field athletes, including an Olympic champion, to those of 503 White European nonathletic controls. Results: Using the speed-power total genotype score, the elite speed-power athletes scored higher than the elite endurance athletes; however, using this speed-power score, 68 nonathletic controls registered higher scores than the elite power athletes. Surprisingly, using the endurance total genotype score, the elite speed-power athletes again scored higher than the elite endurance athletes. Conclusions: These results suggest that genetic information is not capable of accurately discriminating between elite athletes and nonathletic controls, illustrating that the use of such information as a talent-identification tool is currently unwarranted and ineffective.

Restricted access

E. Andrew Pitchford and E. Kipling Webster

The Test of Gross Motor Development (TGMD) measures fundamental motor skills competency and is frequently used for eligibility determination of adapted physical education services in children with disabilities. The purpose of this study was to determine if the TGMD-3 is clinically sensitive to detect deficits in the fundamental motor skills of children with disabilities (i.e., intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, language and articulation disorders). Eighty-five children with disabilities and 85 matched controls (i.e., typically developing, individually matched on age, sex, ethnicity, and race) completed the TGMD-3. Mann–Whitney U tests identified significant differences in the total TGMD-3 scores for children with intellectual disability (p < .001), autism spectrum disorder (p < .001), and attention deficit hyperactivity disorder (p = .032). No differences were identified for children with language and articulation disorders. Comparisons of subscales (i.e., locomotor and ball skills) differed across disability groups. This study provides evidence that the TGMD-3 is clinically sensitive to identify deficits in fundamental motor skills competency.

Restricted access

Anna Meijer, Marsh Königs, Irene M.J. van der Fels, Chris Visscher, Roel J. Bosker, Esther Hartman and Jaap Oosterlaan

The authors performed a clustered randomized controlled trial to investigate the effects of an aerobic and a cognitively demanding exercise intervention on executive functions in primary-school-age children compared with the regular physical education program (N = 856). They hypothesized that both exercise interventions would facilitate executive functioning, with stronger effects for the cognitively demanding exercise group. The interventions were provided four times per week for 14 weeks. Linear mixed models were conducted on posttest neurocognitive function measures with baseline level as covariate. No differences were found between the exercise interventions and the control group for any of the measures. Independently of group, dose of moderate to vigorous physical activity was positively related to verbal working memory and attention abilities. This study showed that physical exercise interventions did not enhance executive functioning in children. Exposure to moderate to vigorous physical activity is a crucial aspect of the relationship between physical activity and executive functioning.