Context: We designed this study to investigate the effects of 2 myofascial release techniques, Instrument-Assisted Soft Tissue Mobilization (IASTM) and Foam Roller (FR), on pain, joint range of motion, and muscle strength in athletes suffering from iliotibial band (ITB) tightness. Design: A total of 39 male soccer players were enrolled in this randomized controlled trial, aged between 18 and 23 years who were divided into 3 groups: Only Exercise, IASTM, and FR. Methods: All participants performed daily strengthening and stretching exercises, while 1 group added IASTM, and the other added FR to the exercise program. We evaluated ITB tightness with the Ober test and an inclinometer, pressure pain threshold, using an algometer, and we evaluated muscle strength with the Cybex Norm Isokinetic device. Results: We found that all 3 groups exhibited an increase in the Ober inclination angle after the interventions (P = .001), but the increase was greater for participants in the IASTM and FR groups, compared with exercise alone. Additionally, both the IASTM and FR groups displayed an increased pressure pain threshold (P = .001), whereas there was no change in the control group. Moreover, while all 3 groups experienced an increase in hip muscle strength (P = .001), the IASTM and FR groups exhibited a greater increase compared with exercise alone (P = .001). Conclusions: Based on these findings, exercise improves pain, range of motion, and muscle strength in athletes with ITB tightness, and IASTM, and FR techniques enhanced exercise effects but did not differ from one another. While our study demonstrated that both IASTM and FR techniques significantly enhance the benefits of exercise for athletes with ITB tightness, further research could delve into the long-term effects of these interventions.
The Effects of Different Myofascial Release Techniques on Pain, Range of Motion, and Muscle Strength in Athletes With Iliotibial Band Tightness: A Randomized Controlled Study
Bayram Sonmez Unuvar, Ertugrul Demirdel, and Hasan Gercek
Extensive Familiarization Is Required Before Assessing Acute Changes in Multiple Object Tracking Performance
Jessica M. Moon, John Pinette, Aneesa Khwaja, Aubrey Fontenot, Violette Gibbs, Trevor J. Dufner, and Adam J. Wells
Context: The Neurotracker CORE assessment is an 8-minute multiple object tracking (MOT) program used in sport science research and clinical rehabilitation as a perceptual-cognitive training tool; however, it has garnered interest for its potential use as an acute assessment of cognitive performance. Although some data exist regarding the learning effect of repeated exposures, it is often overlooked with investigators focusing primarily on the presence of transfer effects to other cognitive realms. As a result, exclusive data on the effect of repeated testing, or subsequent periods of no testing (ie, detraining) on test–retest reliability, and on MOT performance are sparse. Design: Repeated-measures/reliability. Methods: Twenty-three recreationally active men and women completed 15 training sessions consisting of 2 CORE assessments per session (30 assessments). Participants were randomized to either 1 or 2 weeks of detraining prior to completing 15 retraining sessions (30 assessments). Training and retraining periods were divided into 10 blocks (3 assessments/block) for analysis. MOT speed threshold (MOT-ST), consistency, fastest trial score success speed, lowest trial score miss speed, the number of perfect, near misses, and significant miss trials within each block were used to determine performance. Intraclass correlation coefficient, standard error of measurement, and minimal detectable change were used to determine reliability. Results: Significant improvements in MOT-ST and fastest trial score success speed were noted within training blocks 1 to 6 and 1 to 7, respectively (P < .05). MOT-ST and fastest trial score success speed demonstrated excellent test–retest reliability between blocks 8 and 9. There was no effect of detraining period on performance during retraining. Conclusions: Eighteen tests are necessary to overcome training effects and establish a reliable baseline when MOT-ST is used as the performance outcome. Detraining periods up to 2 weeks did not impact performance. The average of 3 discrete tests should be used when assessing MOT-ST performance.
Lumbar Spine and Neural Tissue Mobilizations Improve Outcomes in Runners Presenting With Foot/Ankle Pathology: A Case Series
Christopher R. Hagan, Alexandra R. Anderson, and Craig P. Hensley
Context: Foot/ankle pain is common among runners. Inadequate management of runners with foot/ankle pain can lead to lost training time, competition removal, and other activity limitations. Neurodynamics, which refers to the integrated biomechanical, physiological, and structural function of the nervous system during movement, can be overlooked in patients with foot/ankle pain. Although a link between the cervical spine, neurodynamics, and upper quarter pain has been studied, less is known about the relationship between the lumbar spine and lower quarter. This case series describes the successful management of 3 runners with foot/ankle pain. Case Presentations: Three female runners (ages 23, 24, and 45 y) presented to physical therapy with foot/ankle pain and difficulty running. Each patient had positive examination findings with local foot/ankle testing. A comprehensive lumbar spine examination demonstrated impairments in range of motion and joint mobility that were hypothesized to be contributing. Positive lower quarter neurodynamic tests were also found. Management and Outcomes: All patients were treated with nonthrust lumbar spine mobilization and lower quarter neural tissue mobilization. Changes in the Patient-Specific Functional Scale, Numerical Pain Rating Scale, Lower Extremity Functional Scale, and Global Rating of Change occurred after intervention targeting the lumbar spine and lower-extremity neurodynamics in all patients. Conclusions: This case series demonstrates the importance of including a thorough lumbar spine examination and neurodynamic testing to identify appropriate interventions while managing patients with foot/ankle pain, even when patients have signs indicative of local ankle/foot pathology. These examination procedures should be performed particularly when a patient is not responding to management targeting local foot/ankle structures.
Noninstrumented Clinical Assessment of Static Postural Stability in Chronic Ankle Instability: A Systematic Review and Meta-Analysis
Yuta Koshino and Takumi Kobayashi
Context: Several clinical tests are available to assess static postural stability in individuals with chronic ankle instability (CAI); however, it is unclear which test should be used. Objective: To determine which noninstrumented clinical tests should be used to detect static postural stability deficits in individuals with CAI. Evidence Acquisition: We searched 4 databases from their inception to February 2023, and included studies comparing static postural stability in individuals with CAI and healthy controls using noninstrumented assessments. Two reviewers independently extracted study characteristics, participant information, static postural stability assessment methods, and results. We calculated the pooled standardized mean difference (SMD) and 95% confidence interval using a random effects meta-analysis and assessed the certainty of the evidence. Evidence Synthesis: Fourteen cross-sectional studies (293 participants with CAI and 284 healthy controls) were included. The meta-analysis showed no significant differences between the CAI and healthy groups in the double-leg stance condition of the Balance Error Scoring System (BESS) (SMD, −0.03; low-certainty evidence). Significant group differences were found in the BESS single-leg stance (SLS) on firm and foam surfaces (SLS firm: SMD, 0.47, very low-certainty evidence; SLS foam: SMD, 0.80, very low-certainty evidence), the tandem stance (TS) on firm and foam surfaces (TS firm: SMD, 0.39, low-certainty evidence; TS foam: SMD, 0.76, low-certainty evidence), and the total BESS in the foam conditions (SMD, 1.12, very low certainty evidence). Significant differences were also found between the CAI and healthy groups in the foot-lift (SMD, 1.24; very low certainty evidence) and time-in-balance tests (SMD, −0.94; very low certainty evidence). Conclusions: Due to the large magnitude of the differences, the SLS foam, TS foam, and the total BESS in the foam conditions, as well as the foot-lift test or time-in-balance test, may be the most appropriate to clinically identify static postural stability impairment in individuals with CAI.
A Single Bout of On-Ice Training Leads to Increased Interlimb Asymmetry in Competitive Youth Hockey Athletes
Bryce D. Twible, Luca Ruggiero, Chris J. McNeil, and Brian H. Dalton
Interlimb asymmetry (ILA) refers to an anatomical or physiological imbalance between contralateral limbs, which can influence neuromuscular function. Investigating the influence of neuromuscular fatigue on ILA may be critical for optimizing training programs, injury rehabilitation, and sport-specific performance. The purpose of this study was to determine if a single bout of ice hockey-specific exercise creates or exacerbates lower-limb ILA. Before and after an on-ice training session, 33 youth ice-hockey athletes (14.9 [1.7] y; 11 females) performed 3 repetitions of a maximal vertical countermovement jump (CMJ), an eccentric hamstring contraction, and maximal isometric hip adduction and abduction contractions. Force- and power-related variables were analyzed to determine limb-specific neuromuscular function. The on-ice session reduced maximal isometric hip adduction (left: 7.3% [10.3%]; right: 9.5% [9.6%]) and abduction (left: 4.9% [6.9%]; right: 5.0% [8.1%]) force, but did not impair (P ≥ .10) CMJ performance (jump height, relative peak power, braking duration, and total duration). After the on-ice session, ILA was greater for CMJ propulsive impulse (6.3% [2.9%] vs 5.1% [2.6%]), CMJ braking rate of force development (19.3% [7.6%] vs 15.2% [6.4%]), and peak isometric hip adduction force (6.7% [5.5%] vs 6.1% [4.1%]). In conclusion, hockey-specific exercise leads to increased ILA for multiple force-related metrics, which may be a compensatory mechanism to maintain bilateral task performance when fatigued.
Vision Is Not Required to Elicit Balance Improvements From Beam Walking Practice
Natalie Richer, Steven M. Peterson, and Daniel P. Ferris
Background: Beam walking is a highly studied assessment of walking balance. Recent research has demonstrated that brief intermittent visual rotations and occlusions can increase the efficacy of beam walking practice on subsequent beam walking without visual perturbations. We sought to examine the influence of full vision removal during practice walking on a treadmill-mounted balance beam. Although visual disruptions improved performance of this task, we hypothesized that removing visual feedback completely would lead to less balance improvements than with normal vision due to the specificity of practice. Methods: Twenty healthy young adults trained to walk at a fixed speed on a treadmill-mounted balance beam for 30 min, either with, or without, normal vision. We compared their balance pre-, during, and posttraining by calculating their step-offs per minute and the percentage change in step-offs per minute. Results: Balance improved in both groups after training, with no significant difference in percentage change in step-offs between the normal vision and the no vision participants. On average, the no vision participants had twice as many step-offs per minute as the normal vision group during training. Conclusion: Although previous experiments show that intermittent visual perturbations led to large enhancements of the effectiveness of beam walking training, completely removing visual feedback did not alter training effectiveness compared with normal vision training. It is likely a result of sensory reweighting in the absence of vision, where a greater weight was placed on proprioceptive, cutaneous, and vestibular inputs.
Effect of External Work Magnitude on Mechanical Efficiency of Sledge Jumping
Keitaro Seki and Heikki Kyröläinen
The mechanical efficiency of human locomotion has been studied extensively. The mechanical efficiency of the whole body occasionally exceeds muscle efficiency during bouncing type gaits. It is thought to occur due to elasticity and stiffness of the tendinomuscular system and neuromuscular functions, especially stretch reflexes. In addition, the lower limb joint kinetics affect mechanical efficiency. We investigated the impact of varying external work on mechanical efficiency and lower limb kinetics during repeated sledge jumping. Fifteen male runners performed sledge jumping for 4 minutes at 3 different sledge inclinations. Lower limb kinematics, ground reaction forces, and expired gases were analyzed. Mechanical efficiency did not differ according to sledge inclination. Mechanical efficiency correlated positively with the positive mechanical work of the knee and hip joints and the negative contribution of the hip joints. Conversely, it correlated negatively with both the positive and negative contributions of the ankle joint. This may be attributable to the greater workload in this study versus previous studies. To achieve greater external work, producing more mechanical energy at the proximal joint and transferring it to the distal joint could be an effective strategy for improving mechanical efficiency because of the greater force-generating capability of distal joint muscles.
Effect of Mindful Sport Performance Enhancement in College Athletes for Reducing Sports-Caused Anxiety and Improving Self-Awareness: A Critically Appraised Topic
Shivam Garg, Nancy A. Uriegas, Zachary K. Winkelmann, Morgan Adams, and Amy L. Fraley
Mindful Sport Performance Enhancement (MSPE) training is a relatively new concept, which focuses on helping athletes manage a variety of stressors experienced throughout a season, including performing well academically, staying fit, having a productive season in their sport, and maintaining a healthy social life. A need for a critical appraisal is needed to assess the effectiveness of the intervention. Two cohort studies and one randomized control trial were included in the study and assessed using STROBE and PEDro Scale. Key results show, all 3 studies identified participants experiencing benefits after MSPE with aspects of awareness, acceptance, and emotion regulation. Furthermore, student-athletes who attended either all the sessions or more sessions after the 6-week course showed greater satisfaction with mental and physical health. Overall, there is level “B” evidence to support effectiveness of MSPE for college athletes in reducing sport anxiety and improving their overall well-being.
Erratum. Effect of Mindful Sport Performance Enhancement in College Athletes for Reducing Sports-Caused Anxiety and Improving Self-Awareness: A Critically Appraised Topic
International Journal of Athletic Therapy and Training
The Prevalence of Hypohydration in School-Sponsored Athletes Across and Within Practice Sessions
Grant G. Yee, Tiffanie M. Nolte, Tyler Z. Bouchard, Courtney M. Meyer, Brendon P. McDermott, Zachery T. Richards, Stephanie A. Rosehart, and Susan W. Yeargin
Hydration status monitoring through weight charts can help active individuals maintain optimal fluid balance and prevent health/performance impairments. This study aimed to determine the prevalence of athletes above an acute hypohydration threshold (within practices), a chronic hypohydration threshold (across practices), and the prevalence of athletes below the acute hypohydration threshold and above the chronic hypohydration threshold simultaneously (e.g., undetected chronic hypohydration). Second, involvement of baseline hydration verification (BV; with/without), sex, and competition level (high school, college/university) with acute hypohydration, chronic hypohydration, and undetected chronic hypohydration were also examined. Undetected chronic hypohydration was prevalent across sexes (6.4 ± 16.7% males; 1.4 ± 5.8% females) and competition levels (6.5 ± 16.4% high school; 5.4 ± 15.6% college/university). No significant differences existed across BV status for average acute hypohydration (with BV = 0.8; without BV = 0.8) or chronic hypohydation (with BV = 0.7; without BV = 0.8). All three calculations, absolute body mass loss, acute hypohydration, and chronic hypohydration, should be utilized to determine the prevalence of hypohydration, and they should also be used to assist athletic trainers while making clinical decisions regarding appropriate rehydration interventions.