This study aimed to evaluate the effect of age and intellectual disability (ID) on postural balance parameters, dual-task cost (DTC), and choice reaction time (CRT). Fifty-eight individuals with ID and 55 peers without ID performed a postural stance balance task under two conditions: a single task with eyes open and dual task involving an additional cognitive task (light sequence). Four postural balance parameters (total displacement, total sway area, mediolateral, and anteroposterior dispersion), cost of the dual task ([DTC%] = [(single-task performance − dual-task performance)/single-task performance] × 100), and CRT were recorded, calculated, and analyzed. All postural control parameters reflected poorerperformance during the dual-task condition, nevertheless, DTC was significantly higher only in individuals with ID and only for the total sway area, F(1, 111) = 5.039, p = .027, and mediolateral dispersion, F(1, 111) = 6.576, p = .012. CRT was longer in individuals with ID compared with the individuals without ID, F(1, 111) = 94.979, p ≤ .001, while age did not have a significant effect on the DTC nor on the CRT, F(1, 111) = 0.074, p = .786. In conclusion, an additional cognitive task during the postural balance task had a detrimental effect on various postural balance parameters, leading to increased DTC in terms of total sway area, mediolateral dispersion, and prolonged CRT in individuals with ID.
Dual-Task Cost Effects on Static Posture Control Parameters and Choice Reaction Time in Individuals With and Without Intellectual Disabilities
Danica Janicijevic, Saray Muñoz-López, Andrés Román Espinaco, and Carmen Gutiérrez-Cruz
Effectiveness of Motor Imagery on Physical Function in Patients With Stroke: A Systematic Review
Jaruwan Prasomsri, Katsuya Sakai, and Yumi Ikeda
Over the past two decades, motor imagery (MI) has been used as a supplementary treatment approach to regain physical function in patients with stroke. However, the baseline treatment and the quality of study methodology for new treatment approaches have improved. This systematic review examined the evidence published in the past few decades on the effectiveness of MI on upper- and lower-extremity function and functional performance in patients with stroke. A total of 29 randomized controlled and crossover trials that compared MI with other interventions were analyzed. In addition, the outcomes were grouped into upper-, lower-extremity function, and functional performance for data analysis. More than half of the upper-extremity function studies reported improved performance in Fugl-Meyer assessment, Wolf motor function test, and box and block test in both acute and chronic stages. Lower-extremity function and functional performance were primarily investigated using Fugl-Meyer assessment, gait speed and parameters, activities of daily living, and balance ability. When considering only high-quality studies, six of 15 on upper extremity reported significant effects, whereas five of 15 reported nonsignificant effects. In addition, six of 14 studies on gait and balance reported significant effects. This systematic review suggests that both MI training and conventional rehabilitation programs effectively enhance upper limb functional abilities, including improvements in gait speed and balance, in individuals with acute and chronic stroke. Although the studies published during the past few decades showed heterogeneity in onset after stroke, research protocol, training intensity, and research methodology quality, none of them reported the long-term effects.
High School Girls’ Volleyball Athletes’ Self-Reported Management of Pain, Intentions to Report Overuse Injuries, and Intentions to Adhere to Medical Advice for Treating Overuse Injuries
Kevin M. Biese, Abigail Godejohn, Kamille Ament, Lace Luedke, W. Daniel Schmidt, Brian Wallace, and Robert C. Sipes
Context: Girls’ high school volleyball is a popular sport with a high rate of overuse injuries and sport specialization. Health professionals perceive that high school athletes are reluctant to follow treatment plans involving sport activity reduction. This study’s purpose was to describe high school girls’ volleyball athletes’ self-reported shoulder and knee pain, the likelihood of adhering to medical advice, and the association of factors that influence the likelihood of reporting overuse injuries and sport specialization. Study Design: Cross-sectional. Methods: Participants completed an online survey (demographics, sport participation measures, shoulder and knee pain information, medical adherence likelihood [4-point Likert: not at all likely to extremely likely], and factors influencing overuse injury reporting intentions). A 2 × 2 chi-square analysis compared factors that influence athletes’ intentions to “not report an overuse injury” (eg, I thought my coach would get mad; yes/no) and sport specialization (nonhighly specialized/highly specialized athletes). Results: There were 150 participants (highly specialized = 56%, grade: ninth = 33%, 10th = 28%, 11th = 22%, 12th = 17%). At least 60% reported shoulder and knee pain related to an overuse mechanism. Most reportedly did not seek rehabilitation led by a medical provider (shoulder pain = 66%, knee pain = 60%). Only 11% of athletes reported they were “extremely likely” to rest from sporting activity during the regular season if advised by a medical professional. Highly specialized athletes were more likely to report the pursuit of a college scholarship as a factor that influences their intention to report an overuse injury compared to nonhighly specialized athletes (13% vs 3%, respectively, P = .04). Conclusions: Most girls’ volleyball athletes did not treat their pain with guided rehabilitation, which may increase their risk of a worse overuse injury or even acute injury. Clinicians, athletes, parents, and coaches need to work together to create a sport culture that empowers athletes to discuss their pain and overuse injuries with medical professionals.
Videographic Variability of Triple and Quintuple Horizontal Hop Performance
Anthony P. Sharp, Jonathon Neville, Shelley N. Diewald, Dustin J. Oranchuk, and John B. Cronin
Context: Horizontal hops can provide insight into how athletes can tolerate high-intensity single-leg stretch loads and are commonly used in athlete monitoring and injury management. Variables like flight, contact, and total time provide valuable diagnostic information to sports science professionals. However, gold-standard assessment tools (eg, 3-dimensional motion capture, force plates) require monetary and technological resources. Therefore, we used a tablet and free software to determine the between-rater, within-rater, and test–retest variability of the temporal events of multiple horizontal hop tests. Design: Reliability study. Methods: Nine healthy males (20.8 [1.3] y, 71.4 [9.8] kg, 171.7 [4.5] cm) across various university sports teams and clubs volunteered and performed several triple (3-Hop) and quintuple (5-Hop) horizontal hops over 3 testing sessions. Six raters detected temporal events from video to determine between-rater variability, while a single rater quantified within-session and test–retest variability. The temporal variables of flight time, ground contact time for each individual hop, and the total time of each hoping series were determined. The consistency of measures was interpreted using the coefficient of variation and interclass correlation coefficients (ICC). Results: Good to excellent between-rater consistency was observed for all hops (ICC = .85–1.00). Absolute (coefficient of variation ≤ 2.0%) and relative consistency (ICC = .98–1.00) was excellent. Test–retest variability showed acceptable levels of absolute consistency (coefficient of variation ≤ 8.7%) and good to excellent consistency in 10/16 variables (ICC = .81–.93), especially those later in the hopping cycle. Conclusions: A tablet and free digitizing software are reliable in detecting temporal events during multiple horizontal hops, which could have exciting implications for power diagnostics and return-to-play decisions. Therefore, rehabilitation and performance professionals can confidently utilize the highly accessible equipment from this study to track multiple hop performances.
Caffeine Abstinence in Habituated Users: Cardiovascular Responses to Exercise With Blood Flow Restriction
Matthew A. Chatlaong, Daphney M. Carter, William M. Miller, Chance J. Davidson, and Matthew B. Jessee
Context: Blood flow restriction resistance exercise studies often require caffeine abstinence to avoid cardiovascular effects that could change the blood flow restriction stimulus. However, effects may be attenuated for habituated users. Objective: To compare cardiovascular responses to blood flow restriction resistance exercise when habituated users consume or abstain from caffeine. Design: Thirty participants completed a 3-visit within-subject study beginning with familiarization and caffeine intake questionnaire. Methods: Visits 2 and 3 consisted of blood flow restriction resistance exercise (3 sets bicep curls to failure, 30% 1-repetition max, 40% arterial occlusion pressure [AOP]), following participants’ normal caffeine consumption (CAFF) or abstaining (ABS). AOP, systolic (SBP) and diastolic (DBP) blood pressure, and heart rate were measured preexercise and postexercise. Prevalues and preexercise to postexercise change scores for SBP, DBP, AOP (all millimeters of mercury), heart rate (in beats per minute), and repetitions were compared between conditions. Results are represented as mean (SD). Results: Preexercise AOP was similar for CAFF (137.8 [14.4]) and ABS (137.1 [14.9], BF10 = 0.2), although pre-SBP was higher for CAFF (115.4 [9.8]) than ABS (112.3 [9.4], BF10 = 1.9). Pre-DBP was similar between conditions. The exercise-induced change in AOP was greater for CAFF (18.4 [11.2]) than ABS (13.2 [14.9]), though evidence was anecdotal (BF10 = 0.7). Exercise-induced changes in SBP, DBP, and heart rate were similar between conditions (all BF10 ≤ 0.40). More repetitions were completed for CAFF (63 [26]) than ABS (57 [17], BF10 = 2.1). Conclusions: The findings of this study suggest that for habituated users, maintaining daily caffeine habits will not have substantial effects on common cardiovascular variables relevant to blood flow restriction.
The Influence of Psychological Factors on Physical Activity in Individuals With Patellofemoral Pain
Timothy J. Gilgallon, Sungwan Kim, and Neal R. Glaviano
Context: Patellofemoral pain (PFP) is a prevalent chronic condition characterized by retropatellar or peripatellar pain exacerbated by various knee flexion-based activities. Previous research has highlighted the impact of psychological constructs on pain and function in chronic musculoskeletal pain conditions, yet their influence on physical activity in PFP cohorts remains unexplored. We aimed to evaluate whether pain self-efficacy and pain catastrophizing predict variations in steps per day and moderate to vigorous physical activity (MVPA) among individuals with PFP. Design: Cross-sectional observational study. Methods: Thirty-nine participants (11 males) with PFP were included. Dependent variables were steps per day and minutes of MVPA. Independent variables were pain self-efficacy and pain catastrophizing, measured by the pain self-efficacy questionnaire and the pain catastrophizing scale. Participants were given an ActiGraph wGT3X-BT for 7 days to assess physical activity. Correlations were assessed between psychological measures and physical activity, and a simple linear regression was performed on psychological variables that correlated with physical activity. Alpha was set a priori at P < .05. Results: Pain self-efficacy scores displayed a moderate association with steps per day (rho = .45, P = .004) and a weak association with MVPA (rho = .38, P = .014). Pain catastrophizing scores exhibited no significant associations with physical activity (P < .05). Regression models affirmed pain self-efficacy scores as significant predictors of both steps per day (F 1,37 = 10.30, P = .002) and MVPA (F 1,37 = 8.98, P = .004). Conclusions: Psychological measures continue to demonstrate value to clinicians treating PFP. Pain self-efficacy scores were moderately associated with steps per day and weakly associated with MVPA, explaining nearly a fifth of the variation in physical activity. Clinicians should prioritize the assessment of pain self-efficacy when treating individuals with PFP, potentially employing psychological interventions to improve physical activity in the PFP population.
Isokinetic Peak Torque Improvement and Shoulder Muscle Ratios Imbalance Correction After Specific Strength Training on a New Ballistic Throwing Device: A Randomized Controlled Trial
Brahim Agrebi, Wissem Dhahbi, Hatem Abidi, Sofien Kasmi, Narjes Houas, Mokhtar Chtara, and Karim Chamari
Context: The aim of this study was to investigate the effects of 8-week ballistic-strength-training program using a validated specific throwing device (ie, Arm/Shoulder Specific Strength Device), on isokinetic shoulders’ rotation muscle-torques and ratios as well as range of motion in team handball players. Design: A repeated-measures experimental design with a randomized controlled trial was used. Methods: Twenty-six high-level competitive male U-19 team handball players were randomly assigned into training (TG, n = 15) and control (n = 11) groups. The TG undertook a twice a week for 8-week periodized throws program with an individually predetermined optimal load. The program incorporated shackled eccentric and concentric exercises using the Arm/Shoulder Specific Strength Device. Peak torques, functional, and conventional ratios for both arms at different angular velocities (60°·s−1, 180°·s−1, and 300°·s−1) were assessed over time and between groups, using an isokinetic dynamometer. Results: A significant improvement for TG (P < .01; d = 1.13 [moderate]; +20.2%) of the concentric peak torques for dominant arm in external rotation was observed at 300°·s−1. Significant (P < .05–.01) increases were also noted for nondominant arm at the 3 studied angular velocities. In addition, 300°·s−1 eccentric peak torques of the dominant arm and nondominant arm have significantly improved for both external and internal rotations (P < .05; d = .99 [moderate] and d = 1.21 [large]; +15.7% and + 17.9%, respectively) with small changes at the other angular assessed velocities. Posttraining, TG’s dominant arm showed significant improvements (P < .05–.01) in functional and conventional ratios at all velocities. Notably, significant differences (P < .05–.01) were observed at 60°·s−1 and across all velocities when comparing the TG with the control group. TG showed significant increase for internal rotation and external rotation shoulder range of motions (P < .05; d = 1.22–1.27 [large]), +5.0% and +7.7%, respectively). Conclusions: The specific 8-week throwing training program on the Arm/Shoulder Specific Strength Device showed significant performance improvements in almost all assessed isokinetic concentric and eccentric peak torques as well as internal and external range of motion increase for both arms while ensuring rotator cuff torque ratios and shoulder mobility in team handball real sport-specific condition.
Reliability of Ultrasound Assessment of Hamstring Morphology, Quality, and Stiffness Among Healthy Adults and Athletes: A Systematic Review
Maria Belinda Cristina C. Fidel, Charidy S. Ramos, Donald G. Manlapaz, Helen Banwell, and Consuelo B. Gonzalez-Suarez
Context: The incidence and recurrence rate of hamstring strain injuries remain persistently high, with recurrent injuries leading to increased time lost during play and extended recovery periods compared with initial injury. Ultrasound imaging assesses important factors such as hamstring fascicle length (FL), pennation angle (PA), cross-sectional area (CSA), muscle thickness (MT), echo intensity (EI), and shear wave elastography (SWE), all impacting athletic performance. However, its reliability must be established before employing any measurement tool in research or clinical settings. Objectives: To determine the reliability and measurement error of ultrasound for assessing hamstring FL, PA, CSA, MT, EI, and SWE among healthy adults and athletes; to synthesize the information regarding the operationalization of ultrasound. Evidence Acquisition: A systematic literature search was done from January 1990 to February 5, 2023, to identify reliability and validity studies of hamstring ultrasound assessment published in peer-reviewed journals with identifiable methodology of outcome measures. Evidence Synthesis: Intraclass correlation coefficient measurement of 14 included studies reported moderate to excellent intrarater, interrater, and test–retest reliabilities of FL, PA, and MT regardless of the site of muscle testing, probe size, and setting, state of muscle, and use of different techniques in the extrapolation of FL. Good to excellent test–retest reliability rates for all hamstring anatomic CSA along midmuscle and different percentages of thigh length using panoramic imaging. Good intrarater reliability of EI regardless of gender and orientation of the probe but with excellent intrarater reliability in transverse scan using maximum region of interest. Good intrarater, interrater, and interday repeatability on SWE with the muscle in a stretched position. Conclusion: Evidence from studies with a predominantly low risk of bias shows that ultrasound is a reliable tool to measure hamstring FL, PA, CSA, MT, EI, and SWE in healthy adults and athletes under various experimental conditions.
Test–Retest Reliability and Visual Perturbation Performance Costs During 2 Reactive Agility Tasks
Ellen M. Smith, David A. Sherman, Samantha Duncan, Andy Murray, Meredith Chaput, Amanda Murray, David M. Bazett-Jones, and Grant E. Norte
Context: High secondary injury rates after orthopedic surgeries have motivated concern toward the construct validity of return-to-sport test batteries, as it is evident that common strength and functional assessments fail to elicit pertinent behaviors like visual search and reactive decision making. This study aimed to establish the test–retest reliability of 2 reactive agility tasks and evaluate the impact of visual perturbation on physical performance. Methods: Fourteen physically active individuals completed 2 agility tasks with reaction time (ie, 4 corner agility), working memory, and pathfinding (ie, color recall) components. Participants completed both tasks 4 times in 2 sessions scheduled 7 days apart. Outcomes included performance metrics of reaction time, time to target, number of targets, and total time assessed with reactive training timing gates. To assess test–retest reliability, we used intraclass correlation coefficients (ICCs), standard error of measurement (SEM), and minimal detectable change (MDC). Stroboscopic goggles induced visual perturbation during the fourth trial of each task. To assess the effect of visual perturbation, we used paired t tests and calculated performance costs. Results: The 4-corner agility task demonstrated excellent reliability with respect to reaction time (ICC3,1 = .907, SEM = 0.13, MDC = 0.35 s); time to light (ICC3,1 = .935, SEM = 0.07, MDC = 0.18 s); and number of lights (ICC3,1 = .800, SEM = 0.24, MDC = 0.66 lights). The color recall task demonstrated good-to-excellent test–retest reliability for time to lights (ICC3,1 = .818–.953, SEM = 0.07–0.27, MDC = 0.19–0.74 s); test time (ICC3,1 = .969, SEM = 5.43, MDC = 15.04 s); and errors (ICC3,1 = .882, SEM = 0.19, MDC = 0.53 errors). Visual perturbation resulted in increased time to target (P = .022–.011), number of targets (P = .039), and total test time (P = .013) representing moderate magnitude degradation of performance (d = 0.55–0.87, performance costs = 5%–12%). Conclusions: Both tasks demonstrated acceptable test–retest reliability. Performance degraded on both tasks with the presence of visual perturbation. These results suggest standardized reactive agility tasks are reliable and could be developed as components of dynamic RTS testing.
Athletic Training Students’ Use of Evidence-Based Practice Professional Behaviors During Clinical Experiences: A Report From the Association for Athletic Training Education Research Network
Cailee E. Welch Bacon, Julie M. Cavallario, Stacy E. Walker, R. Curtis Bay, and Bonnie L. Van Lunen
With the incorporation of evidence-based practice (EBP) during patient care as a curricular content standard, professional programs must prepare athletic training students (ATSs) for the application of EBP during the delivery of patient care. We aimed to examine ATSs’ implementation of professional behaviors associated with EBP during patient encounters (PEs). Through a multisite panel design, we tracked numerous factors associated with PEs experienced by 363 ATSs of 12 professional athletic training programs. Generalized estimating equation models were used to analyze the likelihood that students included EBP behaviors during 30,522 PEs. Clinical site type (p < .001), student role (p < .001), and encounter length (p < .001) were associated with all three EBP professional behaviors while clinical site type (p < .001) was also associated with whether the ATS asked a question of a clinician, including their preceptor. Program administrators seeking to promote the greatest opportunities for ATSs to implement EBP during patient care should seek clinic-based or other nonacademic site types that promote longer PEs in which students can perform or assist their preceptor.