The literature on speed–accuracy trade-off (SAT) in motor control has evidenced individuality in how individuals trade moments (e.g., mean and variance) of spatial and temporal errors. These individual tendencies could grasp tendencies of the system given previous experiences and constraints of the organism, a signature of the system control. Nonetheless, such tendency must be robust to small perturbations. Thirty participants performed nine conditions with different time and spatial criteria over 2 days (scanning). In between these scanning conditions, individuals performed a practice condition that required modifications of the individuals’ preferred spatial and temporal tendency in the SAT. Our results demonstrated that there were no systematic effects of practice in SAT preferences. However, individual analyses demonstrated significant changes for 25 out of 30 individuals. The latter either attests against a consistent preference or to a more complex characterization of individual SAT tendencies.
Browse
Consistent Individual Tendencies in Motor Speed–Accuracy Trade-Off
Matheus M. Pacheco, Charley W. Lafe, Che-Hsiu Chen, and Tsung-Yu Hsieh
Short- and Long-Term Changes in Balance After Active Video Game Training in Children With and Without Developmental Coordination Disorder: A Randomized Controlled Trial
Tatiane Targino Gomes Draghi, Bouwien Smits-Engelsman, Daniela Godoi-Jacomassi, Jorge Lopes Cavalcante Neto, Dorothee Jelsma, and Eloisa Tudella
Active video games (AVG) have been used as training tools and are known to ameliorate balance performance in children with Developmental Coordination Disorder (DCD). Our aim was to evaluate balance using clinical tests and by measuring body sway using a force plate with a mixed design of vision (eyes open/eyes closed), surface (rigid/soft), and support (stance/semitandem) before, and after, training and 4 months later (follow-up). Thirty-six DCD children and 40 typically developing children participated in the study, of which 50 children (26 DCD; 24 typically developing) were retested after 4 months. Balance improved on the clinical measures after the training, which was independent of type of AVG (Wii-Fit and Xbox Kinect) used, and this effect was still present after 4 months. The AVG training did not influence general sway behavior, but only sway in the eyes-open condition, corresponding with task demands of the training and indicating a training-specific effect. Overall, DCD children and typically developing children responded comparably to the AVG training, thereby maintaining the gap in performance between the two groups. The changes in postural sway are interpreted as a sign of more confidence and less freezing of the joints, enabling greater flexibility of movements and balance strategies as supported by the improved performance on balance tests in the DCD children. This is the first study that showed long-term effects of AVG training on balance performance. However, these follow-up results should be interpreted with caution given that 35% of the children were lost in follow-up.
The Effects of Various Cognitive Tasks Including Working Memory, Visuospatial, and Executive Function on Postural Control in Patients With Anterior Cruciate Ligament Injury
Fatemeh Emami, Hossein Negahban, Ehsan Sinaei, Neda Mostafaee, Behnaz Shahtahmassebi, Mohammad Hossein Ebrahimzadeh, and Mohammad Mehravar
Anterior cruciate ligament (ACL) rupture can impair balance performance, particularly during cognitive motor dual-tasks. This study aimed to determine the effects of various modalities of cognitive load (working memory, and visuospatial and executive function) on postural control parameters in individuals with ACL injury. Twenty-seven ACL-injured and 27 healthy participants were evaluated doing different cognitive tasks (silent backward counting, Benton’s judgment of line orientation, and Stroop color-word test) while standing on a rigid surface or a foam. Each task was repeated three times and then averaged. Center of pressure variables used to measure postural performance included sway area and sway velocity in anterior–posterior and medial–lateral directions. Cognitive performance was also assessed by calculating errors and the score of cognitive tasks. A mixed model analysis of variance for center of pressure parameters indicated that patients had more sways than the healthy group. The interaction of group by postural difficulty by cognitive tasks was statistically significant for cognitive errors (p < .01), and patients with ACL injury indicated more cognitive errors compared to healthy controls while standing on the foam. The main effect of cognitive task was statistically significant for all postural parameters, representing reduced postural sways in both groups with all cognitive tasks. However, ACL-injured patients showed more cognitive errors in difficult postural conditions, suggesting that individuals with ACL injury may prioritize postural control over cognitive task accuracy and adopt the posture-first strategy to maintain balance under dual-task conditions.
Effects of Static Hamstring Stretching on Maximal Sprint Speed and Relationship With Nordic Hamstring Strength
Yusuke Ozaki and Takeshi Ueda
This study aimed to determine the acute effects of static stretching of the hamstrings on maximal sprint speed and its spatiotemporal variables and lower-limb kinematics during the late swing phase, as well as the relationship with Nordic hamstring strength. The study had a within-participant experimental design. Sixteen healthy male college sprinters were asked to sprint 80 m without static stretching and with static stretching of the hamstrings for 4 × 30 s per leg before the sprint; both conditions were counterbalanced. The knee flexion peak torque was measured using the Nordic hamstring. The differences between no static stretching and static stretching as well as their relationship with Nordic hamstring strength were investigated. The results showed that the touchdown distance (p = .036) significantly increased following static stretching. Although not significant, maximal sprint speed decreased (p = .086), and the theoretical hamstring length (difference between knee angle and hip angle) at ipsilateral touchdown was greater (p = .069) following static stretching. In addition, a lower peak torque of the Nordic hamstring resulted in a more significant decrease in maximal sprint speed following static stretching. Therefore, static stretching of the hamstring just before sprinting may increase the theoretical hamstring length during the late swing phase at maximal sprint speed and induce kinematics that increases the hamstring strain injury risk. Moreover, it is suggested that improving the Nordic hamstring strength may help minimize the negative effects of static stretching on the hamstrings.
Age-Related Constraints in the Visuomotor Plasticity of Postural Control as Revealed by a Whole-Body Mirror Learning Task
Iasonas Christodoulou, Vasileios Mylonas, Theodoros M. Kannas, Charalampos Sotirakis, Lida Mademli, Evangelia Kouidi, and Vassilia Hatzitaki
Whether visuomotor plasticity of postural control is a trainable feature in older age remains an open question despite the wealth of visually guided exercise games promising to improve balance skill. We asked how aging affects adaptation and learning of a visual feedback (VF) reversal during visually guided weight shifting and whether this skill is modulated by explicit knowledge. Twenty-four older (71.43 ± 2.54 years) and 24 young (24.04 ± 0.93 years) participants were exposed to a 180° VF reversal while tracking a horizontally moving target by voluntarily weight shifting between two force platforms. An explicit strategy was available to half of the participants with detailed instruction to counter the VF rotation. Individual error data were fitted to an exponential function to assess adaptation. Fewer older (12/24) than younger (21/24) participants adapted to the VF reversal, displaying error curves that fitted the exponential function. Older adults who adapted to the VF reversal (responders, n = 12) reached an asymptote in performance in the same weight shifting cycle and displayed a similar mean asymptotic error compared with young participants. Young but not older responders exhibited an aftereffect when the VF reversal was removed. Instruction did not influence spatial error modulations regardless of age. The large individual variations within the older adults’ group during early adaptation suggest age-specific limitations in using explicit cognitive strategies when older adults are exposed to an abrupt mirror feedback reversal that requires a change in weight shifting direction during whole-body postural tracking.
Volume 28 (2024): Issue 1 (Jan 2024)
High-Intensity Forward-Backward Plyometrics After the Warm-Up Entail Better Sprint and Change-of-Direction Performance Than Low-Intensity Side-to-Side Plyometrics
Karim Ben Ayed, Raouf Hammami, Javier Gene-Morales, Amira Ajailia, Hanen Werfelli, Haithem Rebai, Pablo Jiménez-Martínez, Jorge Flandez, and Juan C. Colado
This study aimed to determine the acute effects of high-intensity forward-backward and low-intensity side-to-side plyometric jumps performed following the warm-up on sprint (5, 10, and 15 m) and change-of-direction (COD) (T-half test and repeated T-half tests) performance in youth volleyball players. After a familiarization week, 30 male volleyball players (age = 12.04 ± 1.03 years) performed three randomized conditions (no-plyometrics, high-intensity plyometrics, and low-intensity plyometrics) in three sessions. In a within-subject design, three sets of six repetitions of forward-backward 30-cm hurdle jumps (high-intensity) and side-to-side 20-cm hurdle jumps (low-intensity) were completed. Sprint and COD were tested after each of the conditions with a 2-min rest. A significant effect of the plyometric condition was observed on sprint (p < .001,
The Influence of a Warm-Up on Vigilance in University Students
Francisco Tomás González-Fernández, Alfonso Castillo-Rodriguez, Sixto González-Víllora, and David Hortigüela-Alcalá
The present study aimed to analyze the effects of conducting a warm-up (WC) or not (WWC) on students of the Science Degree in Physical Activity and Sport before starting a practical class. Thirty-two students of the Science Degree in Physical Activity and Sport (age: 22.38 ± 1.81 years; height: 176.09 ± 8.52 cm; weight: 22.38 ± 1.81 kg; body fat: 25.17 ± 3.20%) participated in a counterbalanced cross-sectional study in which three conditions were tested: (a) basal lineal, (b) WC, and (c) WWC. Participants recorded longer times (worse performance) in the Illinois dribbling test (basal lineal condition [20.17 ± 1.35], WWC [20.13 ± 1.37], and WC [19.32 ± 1.35]) and the Psychomotor Vigilance Task test (basal lineal condition [397.88 ± 75.98 ms]; WWC [412.19 ± 91.39 ms], and WC [368.53 ± 68.65 ms]). The warm-up prior to physical activity classes had positive effects on vigilance linked to executive functioning, and physical performance. In this sense, more research on different types of warm-up may be in order to contrast them with each other, as well as to carry out attention measurements according to the content to be imparted after the warm-ups. The present study represents a big opportunity for all physical education teachers due to warm-up is a crucial aspect that occurs in all practical sessions, also linked to the attention processes and motivational factors of the students.
Increased Ability to Perceive Relevant Sensory Information Minimizes Low Back Exposures in Lifting
Daniel P. Armstrong, Brian C. Horslen, and Steven L. Fischer
We have previously shown evidence that some individuals seem to consistently minimize low back loads when lifting, while others do not. However, it is unknown why. Individual differences in ability to perceive relevant sensory information may explain differences in minimization of low back loads during lifting, consistent with considering load reduction in one’s movement objective in an optimal feedback control theory framework. The purpose of this study was to investigate whether individuals’ ability to perceive proprioceptive information (both force- and posture-senses) at the low back was associated with peak low back loads when performing generic or occupation-specific lifts. Seventy-two participants were recruited to perform 10 barbell (generic) and backboard (occupation-specific) lifts, while whole-body kinematics and ground reaction forces were collected. Peak low back compression and anteroposterior shear forces normalized to body mass were calculated as dependent variables. Both posture matching ability and force matching ability at the heavier force targets were associated with lower means and variability of peak low-back loads in both lift types, albeit with small effect sizes (R 2 ≤ .17). These findings support the utility of an optimal feedback control theory framework to explore factors explaining interindividual differences in low back loads during lifting. Further, this evidence suggests improving proprioceptive ability may be a useful strategy in lift training programs designed for workplace injury prevention.
Acute Effect of Brace Use on Upper-Extremity Functionality in Adolescent Individuals With Idiopathic Scoliosis: A Cross-Sectional Study
Kamil Yilmaz, Fatih Celik, and Bayram Sonmez Unuvar
It is well known that scoliosis adversely affects the functions of the upper extremities. However, the acute effect of rigid braces, which are widely used in the conservative treatment of scoliosis, on upper-extremity functionality remains unknown. The aim of this study was to investigate the acute effect of a rigid thoracolumbosacral brace use on upper-extremity functionality in individuals with adolescent idiopathic scoliosis (AIS). Thirty-eight individuals diagnosed with AIS participated in this cross-sectional study, with a mean age of 14.55 ± 1.90 years and a range of 10–18 years. The upper-extremity functionality was assessed using the Nine-Hole Peg Test and handgrip strength, with assessments conducted under both in-brace (with their own braces) and out-of-brace conditions. Nine-Hole Peg Test durations of the AIS patients for the nondominant side were significantly lower for in-brace conditions compared with out-of-brace conditions (p = .049, effect size = 0.136). The grip strength of the nondominant side was significantly higher for in-brace conditions compared with out-of-brace conditions (p = .025, effect size = 0.365). A weak negative correlation was found between the degree of curvature and the grip strength of the dominant side for in-brace conditions (r = −.323, p = .048). It was concluded that the brace had a positive effect on upper-extremity functionality on the nondominant side by both shortening the Nine-Hole Peg Test duration and increasing grip strength. In AIS patients, the brace may positively affect daily living by improving the functionality of the nondominant extremity.