Clinical Scenario: Anterior cruciate ligament (ACL) tear is a devastating knee injury with negative long-term consequences, such as early-onset knee osteoarthritis, biomechanical compensations, and reduced physical activity. Significant reduction in physical activity is a powerful indicator of cardiovascular (CV) disease; therefore, those with a history of ACL injury may be at increased risk for CV disease compared with noninjured individuals. Focused Clinical Question: Do individuals with a history of ACL injury demonstrate negative CV changes compared with those without a history of ACL injury? Summary of Key Findings: Three articles met the inclusion criteria and investigated CV changes after ACL injury. Both cross-sectional studies compared participants with ACL injury with matched controls. Bell et al compared time spent in moderate to vigorous physical activity and step count, whereas Almeida et al compared maximum rate of oxygen consumption, ventilatory thresholds, isokinetic quadriceps strength, and body composition. Collectively, both quantitative studies found that individuals with a history of ACL injury had less efficient CV systems compared with matched controls and/or preoperative data. Finally, a qualitative study of 3506 retired National Football League athletes showed an increased rate of arthritis and knee replacement surgery after an ACL injury when compared with other retired National Football League members, in addition to a >50% increased rate of myocardial infarction. Clinical Bottom Line: A history of ACL injury is a source of impaired physical activity. Preliminary data indicate that these physical activity limitations negatively impair the CV system, and individuals with a history of ACL injury demonstrate lower maximum oxygen consumption, self-reported disability, and daily step count compared with noninjured peers. These complications support the need for greater emphasis on CV wellness. Strength of Recommendation: Consistent findings from 2 cross-sectional studies and 1 survey study suggest level IIB evidence to support that ACL injury is associated with negative CV health.
Browse
Protracted Cardiovascular Impairments After Anterior Cruciate Ligament Injury: A Critically Appraised Topic
Cody R. Butler, Kirsten Allen, Lindsay J. DiStefano, and Lindsey K. Lepley
Gait Retraining With Real-Time Visual Feedback to Treat Patellofemoral Pain in Adult Recreational Runners: A Critically Appraised Topic
Marcie Fyock, Nelson Cortes, Alex Hulse, and Joel Martin
Clinical Scenario: Patellofemoral pain (PFP) is a common knee injury in recreational adult runners, possibly caused by faulty mechanics. One possible approach to reduce this pain is to retrain the runner’s gait. Current research suggests that no definitive gold standard treatment for PFP exists. Gait retraining utilizing visual feedback may reduce PFP in both the short and long term. Clinical Question: In adult runners diagnosed with PFP, does gait retraining with real-time visual feedback lead to a decrease in pain? Summary of Key Findings: A literature search was performed; 3 relevant studies utilizing gait retraining with visual feedback, pain level as an outcome measure, and follow-up measures of at least 1 month after the intervention were included. All the included studies reported a decrease in short- and long-term pain for participants following visual feedback gait retraining. In addition, biomechanical measures related to PFP, including peak hip adduction angle and the angle of contralateral pelvic drop, improved after the completion of the intervention. Clinical Bottom Line: There is level 2 evidence supporting the implementation of 8 sessions over 2 weeks of visual feedback gait retraining as a means of treating patients diagnosed with PFP. Based on current available evidence, clinicians should identify faulty mechanics of patients and implement a protocol of increasing real-time visual feedback over the first 4 sessions and decreasing visual feedback over the final 4 sessions. Strength of Recommendation: Level 2.
Can Myofascial Interventions Have a Remote Effect on ROM? A Systematic Review and Meta-Analysis
Connor Burk, Jesse Perry, Sam Lis, Steve Dischiavi, and Chris Bleakley
Context: Anatomical and in vivo studies suggest that muscles function synergistically as part of a myofascial chain. A related theory is that certain myofascial techniques have a remote and clinically important effect on range of motion (ROM). Objective: To determine if remote myofascial techniques can effectively increase the range of motion at a distant body segment. Evidence Acquisition: In November 2018, the authors searched 3 electronic databases (CENTRAL, MEDLINE, and PEDro) and hand-searched journals and conference proceedings. Inclusion criteria were randomized controlled trials comparing remote myofascial techniques with passive intervention (rest/sham) or local treatment intervention. The primary outcome of interest was ROM. Quality assessment was performed using the PEDro Scale. Three authors independently evaluated study quality and extracted data. RevMan software was used to pool data using a fixed-effect model. Evidence Synthesis: Eight randomized controlled trials, comprising N = 354 participants were included (mean age range 22–36 y; 50% female). Study quality was low with PEDro scores ranging from 2 to 7 (median scores 4.5/10). None of the studies incorporated adequate allocation concealment and just 2 used blinded assessment of outcomes. In all studies, treatments and outcomes were developed around the same myofascial chain (superficial back line). Five studies included comparisons between remote interventions to sham or inactive controls; pooled results for ROM showed trends in favor of remote interventions (standard mean difference 0.23; 95% confidence intervals; −0.09 to 0.55; 4 studies) at immediate follow-ups. Effects sizes were small, corresponding to mean differences of 9% or 5° in cervical spine ROM, and 1 to 3 cm in sit and reach distance. Four studies compared remote interventions to local treatments, but there were few differences between groups. Conclusions: Remote exercise interventions may increase ROM at distant body segments. However, effect sizes are small and the current evidence base is limited by selection and measurement bias.
Effectiveness of Mechanical Treatment for Plantar Fasciitis: A Systematic Review
Dorianne Schuitema, Christian Greve, Klaas Postema, Rienk Dekker, and Juha M. Hijmans
Context: Plantar fasciitis is one of the most common foot injuries. Several mechanical treatment options, including shoe inserts, ankle-foot orthoses, tape, and shoes are used to relieve the symptoms of plantar fasciitis. Objectives: To investigate the effectiveness of mechanical treatment in the management of plantar fasciitis. Evidence Acquisition: The review was reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement. A systematic search was performed in PubMed, CINAHL, Embase, and Cochrane up to March 8, 2018. Two independent reviewers screened eligible articles and assessed risk of bias using the Cochrane Collaboration’s risk of bias tool. Evidence Synthesis: A total of 43 articles were included in the study, evaluating 2837 patients. Comparisons were made between no treatment and treatment with insoles, tape, ankle-foot orthoses including night splints and shoes. Tape, ankle-foot orthoses, and shoes were also compared with insoles. Follow-up ranged from 3 to 5 days to 12 months. Cointerventions were present in 26 studies. Conclusions: Mechanical treatment can be beneficial in relieving symptoms related to plantar fasciitis. Contoured full-length insoles are more effective in relieving symptoms related to plantar fasciitis than heel cups. Combining night splints or rocker shoes with insoles enhances improvement in pain relief and function compared with rocker shoes, night splints, or insoles alone. Taping is an effective short-term treatment. Future studies should aim to improve methodological quality using blinding, allocation concealment, avoid cointerventions, and use biomechanical measures of treatment effects.
No Relationship Between Preoperative and Early Postoperative Strength After ACL Reconstruction
Pier Paolo Mariani, Luca Laudani, Jacopo E. Rocchi, Arrigo Giombini, and Andrea Macaluso
Context: All rehabilitative programs before anterior cruciate ligament (ACL) reconstructive surgery, which are focused on recovery of proprioception and muscular strength, are defined as prehabilitation. While it has shown that prehabilitation positively affects the overall outcome after ACL reconstruction, it is still controversial whether preoperatively enhancing quadriceps strength has some beneficial effect on postoperative strength, mainly during the first period. Objective: To determine whether there is any relationship between preoperative and early postoperative quadriceps strength. Design: Case control. Setting: University research laboratory. Participants: Fifty-nine males (18–33 y; age: 23.69 [0.71] y) who underwent ACL reconstruction with patellar-tendon autograft were examined the day before surgery, and at 60 and 90 days after surgery. Main Outcome Measures: The limb symmetry index (LSI) was quantified for maximal voluntary isometric contraction of the knee extensor muscles and of the knee flexor muscles at 90° joint angle. A k-means analysis was performed on either quadriceps or hamstrings LSI before surgery to classify the patients in high and low preoperative LSI clusters. Differences in postoperative LSI were then evaluated between the high and low preoperative LSI clusters. Results: Following surgery, there were no differences in the quadriceps LSI between patients with high and low preoperative quadriceps LSI. Sixty days after surgery, the hamstrings LSI was higher in patients with high than low preoperative hamstrings LSI (84.0 [13.0]% vs 75.4 [15.9]%; P < .05). Conclusions: Findings suggest that quadriceps strength deficit is related to the ACL injury and increases further after the reconstruction without any correlation between the preoperative and postoperative values. Therefore, it appears that there is no need to delay surgery in order to increase the preoperative quadriceps strength before surgery.
Association Between the Seated Single-Arm Shot-Put Test With Isokinetic Pushing Force
Bryan L. Riemann and George J. Davies
Context: Previous investigations have examined the reliability, normalization, and underlying projection mechanics of the seated single-arm shot-put (SSASP) test. Although the test is believed to reflect test limb strength, there have been no assessments determining whether test performance is directly associated with upper-extremity strength. Objective: To determine the relationship between isokinetic pushing force and SSASP performance and conduct a method comparison analysis of limb symmetry indices between the 2 tests. Design: Controlled laboratory study. Setting: Biomechanics laboratory. Patients (or Other Participants): Twenty-four healthy and physically active men (n = 12) and women (n = 12). Intervention(s): Participants completed the SSASP and isokinetic pushing tests using their dominant and nondominant arms. Main Outcome Measures: SSASP distance and isokinetic peak force. Results: Significant moderate to strong relationships were revealed between the SSASP distances and isokinetic peak forces for both limbs. The Bland–Altman analysis results demonstrated significantly (P < .002) greater limb symmetry indices for the SSASP (both medicine balls) than the isokinetic ratios, with biases ranging from −0.094 to −0.159. The limits of agreement results yielded intervals ranging from ±0.241 to ±0.340 and ±0.202 to ±0.221 from the biases. Conclusions: These results support the notion that the SSASP test reflects upper-extremity strength. The incongruency of the limb symmetry indices between the 2 tests is likely reflective of the differences in the movement patterns and coordination requirements of the 2 tests.
Improvements in Shoulder Research and Rehabilitation
Kellie C. Huxel Bliven and Kelsey J. Picha
Incidence of Shoulder Injury in Elite Wheelchair Athletes Differ Between Sports: A Critically Appraised Topic
Jessica R. Fairbairn and Kellie C. Huxel Bliven
Clinical Scenario: Until recently, injury epidemiology data on elite Paralympic athletes were limited. Current data suggest high rates of shoulder injury in wheelchair athletes. Differences in shoulder injury rates between sports have not been reported in this population. Clinical Question: Is the incidence of shoulder injury in elite wheelchair athletes different between sports? Summary of Key Findings: Shoulder injury rates are high in elite wheelchair athletes, particularly in sports such as field events and fencing that require a stable base (eg, trunk, core control) from which to perform. Wheelchair racing requires repetitive motions that contribute to shoulder injuries, but rates are lower than field sports and fencing. Wheelchair curling and sledge hockey have low shoulder injury risk. Clinical Bottom Line: Shoulder injury rates vary based on sport in elite wheelchair athletes. In addition to incorporating shoulder complex specific rehabilitation for overuse shoulder injuries, clinicians should focus on core and trunk stabilization in elite wheelchair athletes competing in sports, such as field events and fencing. Strength of Recommendation: Grade C evidence exists that reports shoulder injury rates among elite wheelchair athletes differ based on sport participation.
Physical Training and Upper-Limb Strength of People With Paraplegia: A Systematic Review
Flávia Cavalcante Monteiro Melo, Kátia Kamila Félix de Lima, Ana Paula Knackfuss Freitas Silveira, Kesley Pablo Morais de Azevedo, Isis Kelly dos Santos, Humberto Jefferson de Medeiros, José Carlos Leitão, and Maria Irany Knackfuss
Context: Physical training improves the strength of upper limbs, contributing directly to the performance of activities of daily life, confirming one more time that the strengthened muscle is imperative for a rapid rehabilitation. Objective: To investigate the scientific implications of the impact of physical training on the strength of the upper limbs of people with paraplegias. Evidence Acquisition: The search strategy with truncations and Boolean operator was defined as: (spinal cord inju* OR traumatic myelopat* OR paraplegi*) AND (physical exercise OR strength training OR resisted training) AND (upper limb* OR arm OR armrest), for all of the databases. There were included experimental and quasi-experimental studies, published in the English language and with the complete text available, with at least 1 physical exercise that worked with the strength of the upper limbs. Two independent evaluators extracted from each article data on study characteristics (publishing year, country of origin, and study design), of the subjects (gender and age), and of the disability (level of lesion and cause). Evidence Synthesis: Seven articles were included in the systematic revision. The procedure used the most for measuring the maximum strength was the 1-repetition maximum test, followed by the isokinetic dynamometer and Quantitative Muscle Testing System. Furthermore, the most commonly associated variables in the included studies were pain in the shoulder, cardiorespiratory capacity, and functionality, respectively. The results showed that all of the variables improved because of the training. Conclusions: The training improved the strength, the functionality, and reduced the pain in the shoulder of the people with paraplegia.