#DCD/Dyspraxia in Real Life: Twitter Users’ Unprompted Expression of Experiences With Motor Differences

Priscila M. Tamplain, 1 Nicholas E. Fears, 2,3 Promise Robinson, 1 Riya Chatterjee, 2 Gavin Lichtenberg, 2 and Haylie L. Miller 2

1Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA; 2School of Kinesiology, University of Michigan, Ann Arbor, MI, USA; 3School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA

Little is known about adults’ experiences with developmental coordination disorder (DCD; sometimes also referred to as dyspraxia). Social media is an accessible opportunity for those who identify as dyspraxic or as having DCD to provide valuable insight into the lifespan impact of this condition on functional ability, participation, compensatory strategies, and well-being. We used the Twitter research application programming interface to identify users who self-identified with the keywords Developmental Coordination Disorder, #DCD, #dyspraxic (or #dyspraxia), or clumsy in their profile descriptions between October 10 and November 10, 2021. During that period, 818 tweets were harvested with 524 remaining after removing duplicates (e.g., multiple promotions of a single resource) and unrelated tweets. They were labeled according to motor differences (general motor, coordination, fine motor skills, oral motor skills, manual dexterity, driving, gross motor skills, movement pain and fatigue, posture and balance, and lower extremity); functional impact (advocacy/awareness, support for others, resources, information, and education, intervention, accommodation, and work); or other related topics (stimming and sensory, co-occurrence and diagnostic overlap, cognitive, social and communication speech, and emotional and mental health).

The DCD/dyspraxic community has clearly identified a lifelong impact of motor differences across multiple contexts. DCD/dyspraxic Twitter users shared compensatory strategies that could help others, and offered insight into their experience of co-occurring conditions and cognitive/emotional sequelae of motor challenges.

Keywords: social media, adults, motor skills, clumsiness, motor development

Developmental coordination disorder (DCD), known in some communities as dyspraxia, is a severe impairment of motor coordination that significantly interferes with academic achievement and activities of daily living (Diagnostic and Statistical
Manual of Mental Disorders, 5th Edition [DSM-5]; American Psychiatric Association, 2013). In general, the bulk of literature on DCD/dyspraxia lies on understanding assessments, mechanisms, and intervention for motor differences in children. However, it is well-known that DCD/dyspraxia extends into adulthood, though studies are relatively sparse (Blank et al., 2019). While most of the recommendations for DCD/dyspraxic children are also relevant for adults, it should be noted that the manifestations of the condition may significantly differ in adults, as well as the consequences of motor differences. A previous study described how the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (American Psychiatric Association, 2013) falls short with regard to describing nonmotoric characteristics of DCD/dyspraxia, such as executive functioning and social emotional, and psychiatric difficulties commonly reported in adults (Purcell et al., 2015). Therefore, there is a pressing need for research (and clinical translation and policies) on adults.

Social media platforms are excellent tools to study self-reported behaviors in an unprompted environment. Twitter is currently one of the most popular social media platforms available today, with 100 million daily active users and 500 million tweets sent daily (Forsey, 2019). Here, we used Twitter to explore the experiences of adolescents and adults who identify as members of the DCD/dyspraxia community. Twitter allows individuals to publicly share their thoughts with a large public audience. These thoughts must be condensed into 280 characters, and users often employ hashtags (#) to collate common topics (Macready, 2022). Twitter provides researchers the rare opportunity to explore the spontaneous self-expression of individuals from diverse populations (e.g., DCD/dyspraxia) outside of prompted and constrained lab- or survey-based research environments. As a result, Twitter is a powerful tool for gaining insight into the lived experiences of DCD/dyspraxic adolescents and adults. In addition, these experiences are shared from an international perspective and are not limited to any single geographic location. DCD/dyspraxic Twitter users can provide valuable insight into the lifespan impact of their motor characteristics on functional ability, participation, compensatory strategies, and well-being. Most importantly, their lived experiences can and should inform diagnostic and management approaches.

The word “developmental” in the term “developmental coordination disorder” refers to onset in the developmental period (i.e., early childhood). However, it is known that DCD/dyspraxic adults continue to experience problems participating in a range of activities, such as gross or fine motor tasks, handwriting and drawing, sport activities, time management, and activities of daily living (Tal-Saban et al., 2012). A study investigating walking patterns confirmed that difficulties in movement control persist into adulthood, and that DCD/dyspraxic adults demonstrate an increased variability of movement while walking compared with peers (Du et al., 2015). Increased gait variability is a known indicator of fall risk in adults (Hausdorff, 2005), and may limit DCD/dyspraxic adults’ mobility and safety when engaging in activities of daily living. Little is known about the effect of DCD/dyspraxia on other functional movement outcomes in adulthood.

DCD has been the internationally accepted term to use for the condition since 1995 (Polatajko et al., 1995). However, it is important to note that some countries continue to use the outdated term “dyspraxia” (e.g., United Kingdom, United States). While many times the terms are used interchangeably, it is important to
note that there are no clear diagnostic criteria for “dyspraxia.” Sometimes, dyspraxia is used to refer to a deficit of “praxis,” as in a decreased ability to learn simply by observation and practice (Sanger et al., 2006). Problems with praxis can also be a symptom of other motor-related conditions, such as cerebral palsy, stroke, and so on (Sanger, 2015). However, it is important to note that the National Institutes of Health (United States), National Health Services (United Kingdom), and many other national and private organizations use the term dyspraxia only to refer to DCD and not to praxis problems associated with other motor conditions. It is essential for researchers to be aware of the language used by members of the community they study, rather than relying only on potentially pathologizing language used by clinicians, educators, caregivers, or other secondary sources. Many adults that have been diagnosed with or who self-identify as having DCD opt to refer to themselves as “dyspraxic,” since there is not an identity-first variant of the term “DCD.” To ensure that we included as many of the voices from this community as possible, we harvested tweets containing both #DCD and #dyspraxia/dyspraxic, and we use both terms to refer to DCD/dyspraxic people hereafter (see “Author Note” for additional context).

Our study aimed to determine the functional impact of DCD/dyspraxia on daily living by examining the content of Twitter users’ bios and tweets. We used a mixed-methods approach, first quantifying the number of users who self-identified with the terms #DCD, #dyspraxic, or #dyspraxia in their bios and then, examining the content of their tweets for common codes. We expected to discover unique, specific indications of the impact of both motoric and nonmotoric features of DCD/dyspraxia in daily living.

Method

Research Strategy

In this study, we accessed publicly available Twitter data via a developer account with Academic Research access in version 2 of the Twitter developer application programming interface. We compiled the data set using a series of custom Python 3 functions (see Fears et al. in this special section). We harvested tweets from users with bios containing the keywords: Developmental Coordination Disorder, #DCD, #dyspraxic, or #dyspraxia, or clumsy between October 10, 2021 and November 10, 2021. The initial search yielded 818 tweets. Of those, 793 remained after removing duplicates (e.g., multiple promotions of a single source) or tweets without any text. After removing tweets unrelated to DCD/dyspraxia (e.g., a tweet about a favorite movie), the final sample included 588 tweets from 113 unique users. Figure 1 shows the process of harvesting and cleaning the data set for analysis.

Content Analysis Process

We used a content analysis framework and a deductive approach to data analysis (Elo & Kyngäs, 2008). In the preparation phase, the first researcher read through the data set several times to familiarize themself with their structure and contents. Duplicate tweets and tweets unrelated to movement or activities of daily living were removed prior to analysis. In the organizing phase, we began with a set of

(Ahead of Print)
expected subcategories drawn from a related data set (Chatterjee et al., in this special section) and based on the domains of motor difficulty commonly observed in DCD as measured by the Movement ABC. The first researcher used an unconstrained matrix, analyzing a small subset of tweets to determine whether these subcategories were an appropriate starting point for analysis. Iteratively, they adjusted the subcategories and the coding of each tweet as moved through the data set. Tweets were coded into at least one and as many as eight subcategories by the first researcher (woman, faculty member with 16 years of experience working in the field of neurodevelopmental conditions), who identified 19 unique subcategories. A second researcher (woman, graduate student with 2 years of experience working in the field of neurodevelopmental conditions) then coded each tweet using these 19 subcategories. A third researcher (woman, faculty member with 12 years of experience working in the field of neurodevelopmental conditions)
verified the first and second researchers’ coding, identified agreements, and adjudicated disagreements through discussion. The third researcher also detected an additional 12 duplicate tweets and removed them from the data set. A total of 576 tweets remained at this stage of organization and coding.

The identified 19 subcategories corresponded with three main categories: motor differences (n = 10), functional impact (n = 4), and other related topics (n = 5). If the tweet described the motor difference itself (e.g., I have trouble moving my fingers in a specific way), it was coded into the “motor differences” main category. If the tweet described the activity affected by a motor difference (e.g., I have trouble playing a stringed instrument), it was coded into the “functional impact” main category. Tweets that did not meet these two criteria, but described other related topics, were coded into the “other related topics” main category. The motor differences categories included the following subcategories: general motor, coordination, fine motor, oral motor, manual dexterity, driving, gross motor, movement pain and fatigue, posture and balance, and lower extremity. The characteristics for each subcategory are described in Table 1. The functional impact category included the following subcategories: advocacy/awareness/support for others, resource/information/education, intervention/accommodation, and work. The other related topics category included the subcategories: stimming and sensory, co-occurrence and diagnostic overlap, cognitive social and communication speech, and emotional and mental health. We quantified the frequency of tweets by subcategory within each category.

Results

After coding, 52 tweets were deemed “unrelated” and excluded from the final sample for analysis, yielding a final sample of 524 tweets. There were a total of

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>General motor</td>
<td>Motor difference or problem described in terms too general to code into one of the subcategories below</td>
</tr>
<tr>
<td>Coordination</td>
<td>Use of 2+ body parts/segments together in an organized, efficient way</td>
</tr>
<tr>
<td>Fine motor</td>
<td>Use of small muscles of the eyes, hands, fingers, and wrists</td>
</tr>
<tr>
<td>Oral motor</td>
<td>Use of muscles of the lips, jaw, tongue, and palate</td>
</tr>
<tr>
<td>Manual dexterity</td>
<td>Use of hands to perform an action quickly and efficiently</td>
</tr>
<tr>
<td>Driving</td>
<td>Operation of a motor vehicle</td>
</tr>
<tr>
<td>Gross motor</td>
<td>Use of large muscle groups to support whole-body movement</td>
</tr>
<tr>
<td>Movement pain/fatigue</td>
<td>Experiences of pain or fatigue associated with movement</td>
</tr>
<tr>
<td>Posture/balance</td>
<td>Maintenance of appropriate alignment between the body and gravity</td>
</tr>
<tr>
<td>Lower extremity</td>
<td>Involving the lower limbs</td>
</tr>
</tbody>
</table>
3,337 likes, 901 retweets, 281 replies, and 103 quote-tweets for the 524 tweets in the sample. The highest proportion of tweets were related to advocacy, awareness, and support for others (63.9%), followed by resource, information, and education (39.1%), co-occurrence and diagnostic overlap (21.5%), and general motor skills (11%). Table 2 shows the frequency analysis for each subcategory by their corresponding main category.

Figure 2 shows the percentage of tweets within the total sample that were coded with one (38.17%), two, (41.79%), three (12.60%), four (5.15%), or five or more (2.29%) categories.

Because many tweets were coded with more than one subcategory, we analyzed the percent overlap between subcategories. The subcategories that co-occurred the majority of the time (>50% of tweets with a given subcategory also

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>Count</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor differences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General motor</td>
<td>58</td>
<td>11.0</td>
</tr>
<tr>
<td>Coordination</td>
<td>25</td>
<td>4.7</td>
</tr>
<tr>
<td>Fine motor</td>
<td>27</td>
<td>5.1</td>
</tr>
<tr>
<td>Oral motor</td>
<td>2</td>
<td>0.3</td>
</tr>
<tr>
<td>Manual dexterity</td>
<td>24</td>
<td>4.5</td>
</tr>
<tr>
<td>Driving</td>
<td>8</td>
<td>1.5</td>
</tr>
<tr>
<td>Gross motor</td>
<td>12</td>
<td>2.2</td>
</tr>
<tr>
<td>Movement pain/fatigue</td>
<td>7</td>
<td>1.3</td>
</tr>
<tr>
<td>Posture(balance)</td>
<td>16</td>
<td>3.0</td>
</tr>
<tr>
<td>Lower extremity</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Functional impact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advocacy/awareness/support for others</td>
<td>335</td>
<td>63.9</td>
</tr>
<tr>
<td>Resource/information/education</td>
<td>205</td>
<td>39.1</td>
</tr>
<tr>
<td>Intervention/accommodation</td>
<td>33</td>
<td>6.2</td>
</tr>
<tr>
<td>Work</td>
<td>27</td>
<td>5.1</td>
</tr>
<tr>
<td>Other related topics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stimming/sensory</td>
<td>7</td>
<td>1.3</td>
</tr>
<tr>
<td>Co-occurrence/diagnostic overlap</td>
<td>113</td>
<td>21.5</td>
</tr>
<tr>
<td>Cognitive</td>
<td>40</td>
<td>7.6</td>
</tr>
<tr>
<td>Social/communication/speech</td>
<td>38</td>
<td>7.2</td>
</tr>
<tr>
<td>Emotional/mental health</td>
<td>59</td>
<td>11.2</td>
</tr>
<tr>
<td>Total</td>
<td>524</td>
<td></td>
</tr>
</tbody>
</table>

Note. Many tweets were coded with more than one subcategory. The percentage coding in the “%” column represents the percentage of tweets (out of the total sample of 524) that received each subcategory code.
had the other subcategory) were: fine motor with manual dexterity (55.56%, \(n = 15\)), fine motor with resource and information education (62.96%, \(n = 17\)), gross motor with general motor (58.33%, \(n = 7\)); lower extremity with movement pain/fatigue (100%, \(n = 1\)); lower extremity with general motor (100%, \(n = 1\)); movement pain/fatigue with general motor (57.14%, \(n = 4\)); stimming and sensory with resource and information education (57.14%, \(n = 4\)); stimming and sensory with co-occurrence and diagnostic overlap (57.14%, \(n = 4\)); and social communication with co-occurrence and diagnostic overlap (57.89%, \(n = 22\)).

Discussion

This study aimed to determine the impact of DCD/dyspraxia on daily living via deductive content analysis of 524 tweets, which yielded three main categories: motor differences, functional impact, and other related topics. Overall, characteristic-focused discourse centered on challenges that limited preferred leisure activities, self-care activities, and job duties. Advocacy-focused discourse and intervention-focused discourse centered on compensatory strategies and calls to action for understanding co-occurrences of autism and attention-related conditions, among others. We will discuss the results by describing subcategories within each main category, using paraphrased tweets to illustrate the manner in which users articulated their perspectives.

Most tweets in the motor differences main category related to the subcategory of general motor differences. This is not surprising, since general motor issues are at the core of DCD/dyspraxia. For example, one tweet mentioned losing things and breaking utensils when having a meal, while another stated that performing movements involved a lot of thinking and concentrating. These are examples of how motor differences manifest in individuals’ daily lives and illustrate the
impact of general motor differences in adolescence and adulthood. Another subcategory within motor differences was coordination. One tweet mentioned bruises as a result of being uncoordinated, and another stated that managing any object is complex because of dyspraxia. In addition, several tweets mentioned difficulty with specific activities that are heavily reliant on coordination, such as writing, driving, and riding a bicycle. For example, one user mentioned their inability to drive because of dyspraxia, and experiencing difficulty with specific writing activities. Driving is a skill that may be necessary for an individual to participate fully in their community, depending on their geographic region. The acquisition of a driver’s license is also a significant event in the transition to adulthood in many cultures. DCD/dyspraxic drivers tend to be more affected by perceptual demands of the task, driving more slowly and further to the right than other groups (Gentle et al., 2021). These results suggest that special emphasis on unique, individualized driving instruction programs for DCD/dyspraxic people should be prioritized.

Interestingly, some tweets mentioned the ability to play videogames, but with difficulties holding and managing the controller to play. This demonstrates that DCD/dyspraxic individuals have a high level of awareness of the impact of DCD/dyspraxia on particular aspects of their activities, and it also highlights the fact that the functional impact of DCD/dyspraxia extends beyond daily living skills into recreation and leisure activities. Studies of DCD/dyspraxic children have demonstrated that intervention using video games such as the Wii can improve motor skills (Jelsma et al., 2014), specifically manual dexterity (Cavalcante Neto et al., 2020). Perhaps adult interventions using video games could achieve similar results.

Difficulty with balance and posture is an important aspect of DCD/dyspraxia (Deconinck et al., 2010; Du et al., 2015; Verbecque et al., 2021). Many tweets indicated falling as a consequence of dyspraxia. Several emphasized fall-related injuries. For example, one user mentioned falling off a couch and breaking their arm, and another described falling off the chair while trying to reach for something, slamming a body part against furniture, and scraping themselves as a consequence. The number of tweets coded with this subcategory indicates that balance and postural control is an important affected area of functional ability that should be prioritized for accommodation and intervention, since fall risk is likely to be increased in the DCD/dyspraxic population.

A smaller number of tweets were related to oral motor and lower extremity. These may be related to co-occurring conditions, which are important to study further, since co-occurrence is common in autism (Licari et al., 2020; Miller et al., 2021), attention-related conditions (Kadesjo & Gillberg, 1998), and childhood apraxia of speech (Iuzzini-Seigel et al., 2022). In addition, movement pain and fatigue were mentioned in some tweets and may relate to the amount of effort that individuals need to expend when performing activities of daily living. Interestingly, a study with adults with DCD showed a higher report of fatigue-related symptoms in comparison with controls, but lower levels in comparison with adults with chronic fatigue syndrome (Thomas & Christopher, 2018). These findings can provide a good baseline for accommodations, as fatigue can provide restrictions for several activities and affect other areas of life.

The functional impact category included advocacy/awareness/support for others, resource/information/education, intervention/accommodation, and work.
Most tweets in the sample related to advocacy and awareness, since they were unintentionally collected during DCD/Dyspraxia Awareness Month, which is observed in some parts of the world. Many of the tweets described positive qualities of a DCD/dyspraxic person, asked questions about how to accomplish tasks, and discussed opportunities to talk about how DCD/dyspraxia affects everyday life. Several tweets referred to information and resources, from ways to do things to offering referrals to various communities or organizations who could address a particular need. Since awareness of DCD/Dyspraxia is still relatively low, especially in comparison with other developmental disabilities, it makes sense that social media discourse is largely aimed at promoting knowledge of the condition and resources that the community can use. Speculatively, it is possible that once awareness of DCD improves, online discourse in the community may expand to identity and other areas. In a way, the large number of tweets where information or resources were shared highlights the lack of awareness and accommodations available in the community, especially from a practitioner standpoint.

It is also important to note that awareness of DCD/dyspraxia is still very low from a practitioner standpoint (Hunt et al., 2021; Wilson et al., 2013). For DCD/dyspraxic people and their loved ones, managing a condition that seems invisible or unclear to those around them may create additional stress and worry (Cairney et al., 2013). Initiatives to improve both awareness and understanding of DCD/dyspraxia could lead to a drastic shift in the language used by community members, health care workers, and educational professionals; they could reduce the stigma associated with clumsiness. Twitter can be a powerful tool with which to increase awareness of DCD/dyspraxia and of relevant resources and accommodations. Using social media as a platform for advocacy could have a number of positive downstream consequences, including changes to public policy, physical education practices, community activities, and even how DCD/dyspraxic people see and feel about themselves (Tamplain & Miller, 2021).

Within the subcategory of intervention/accommodations, users described their positive experiences with occupational therapy, assistive technology, and proper accommodations to support performance. A few users mentioned how their work is affected by DCD/dyspraxia. They stated that driving to work was impossible, and that being a physical education teacher was complicated because of difficulty demonstrating skills. They also noted that executive functioning is associated with dyspraxia but not sufficiently accommodated, particularly in work environments. These tweets tap into different aspects of employment: transport to work, challenges inherent to professions that require motor skills, and problems with executive functioning, which are common in DCD/dyspraxia (Leonard et al., 2015). The lack of available and appropriate accommodations and interventions for DCD/dyspraxic people can make it harder for them to live and work independently, which may be a preference or goal for some individuals.

The other related topics category included stimming/sensory, co-occurrence/diagnostic overlap, cognitive, social/communication/speech, and emotional/mental health. Nearly a quarter of the tweets in our sample related to the subcategory of co-occurrence/diagnostic overlap. It is crucial to learn how co-occurrences interact with DCD/dyspraxia to affect individuals’ abilities and comfort with activities of daily living, especially in adulthood where there is
such a paucity of existing research. The most common conditions mentioned were autism, attention-related conditions, and speech-language conditions. Several tweets explained how DCD/dyspraxia related to cognitive skills such as planning, organization, memory, and executive functioning. Self-reported weaknesses in planning and organization in adults with DCD have been previously described (Kirby et al., 2008). One user expressed a preference for task instructions to be broken down into smaller steps. Another noted feeling as though their brain was overwhelmed because of dyspraxia, and yet another remarked that they need more time for thought processes. These tweets support the conclusion that while the core features of DCD/dyspraxia relate to motor proficiency, associated cognitive features can also be difficult to manage, especially in adolescence and adulthood when less external support for executive functioning is typically provided by others relative to childhood. While there is significant evidence for executive difficulties in DCD (Leonard & Hill, 2015), little has been done to document cognitive abilities in adults with DCD, particularly as in the understanding of how to provide accommodations and support for this population.

Finally, several tweets allude to the emotional and mental health impact of DCD/dyspraxia. For example, one tweet mentions that fatigue is associated with feeling overwhelmed, and another remarks that anyone would be stressed if they were having trouble with motor skills that their peers find easy. A quantitative study of adults showed that the DCD/dyspraxia group reported significantly more symptoms of depression and trait anxiety than their neurotypical peers, even after controlling for the reduced level of physical activity typically shown by DCD/dyspraxic adults (Hill & Brown, 2013). They also self-reported higher general and movement anxiety (Harris et al., 2021). A qualitative study showed that mental health difficulties emerged as a key theme in recent scoping review in young adults, highlight the fact that challenges experienced by the DCD/dyspraxic community can reduce participation and compound their difficulties (Gagnon-Roy et al., 2016).

Our results align well with a previous qualitative study on lived experiences of adults with DCD (Scott-Roberts & Purcell, 2018). All individuals in the study reported difficulties with functional mobility and its impact on daily life but registered that they were actively engaged in a wide range of age- and ability-appropriate work, home, and leisure activities. The authors noted that a range of personal factors mitigated the impact of poor motor proficiency (Scott-Roberts & Purcell, 2018). An important part of improving mental health in this population may be to document and prioritize the strengths of individuals (e.g., a high problem-solving ability and self-evaluation skills). Future studies can investigate the effect of those in online discourse and experiences of adults with DCD. In addition, studies should continue to explore the effects of age and gender differences in the presentation of DCD in adults (Cleaton et al., 2021).

Despite the rich body of knowledge and firsthand perspectives gained from our data set, this study is not without limitations. There are several constraints to analysis of Twitter data. Tweets are not retrieved in a threaded format, making it difficult to determine which tweets are new versus those that are replies to previous tweets in an ongoing discussion. Not having information about the contextual order of tweets can make it difficult for replies and quotes to be
analyzed appropriately. In addition, we did not analyze images, emojis, videos, or links in tweets, as coding those go beyond the scope of the current study. It is possible that we missed additional information that could have helped contextualize or extend our results. Future studies could use tools such as computer vision to process image-based data, but careful attention should be paid to the level of subjectivity involved in interpreting the use of these forms of expression. The results did not come from three independent researchers, given that our analytic approach was deductive and sequential, which may have introduced bias in our interpretation of the content of the tweets. It is also possible that the researchers’ individual and collective positionality may have biased our interpretation of the data, as in any qualitative analysis. The codes may not reflect the most current concerns and discourse on Twitter due to the time lapse between collection and publication. Finally, we could not verify that Twitter users with #DCD/#dyspraxia in their user bios all had a clinical diagnosis of DCD. It is possible that they may have been misidentified or misusing #dyspraxia to refer to praxis problems related to another motor condition. Despite these limitations, studying individual users’ text-based communication on a public social media platform can support our understanding of people’s experiences with DCD/dyspraxia in the real world.

Conclusion

The DCD/dyspraxic community has clearly identified the impact of motor differences across multiple contexts. Information shared by DCD/dyspraxic Twitter users provided insight into their experiences with the impact of motor differences on their daily living skills, leisure activities, and work. They also provided insight into their perspectives on co-occurring conditions and the cognitive/emotional sequelae of motor challenges. This new knowledge serves as a starting point for understanding adolescents’ and adults’ experiences with DCD/dyspraxia and the domains of life affected by motor differences across development using unprompted, firsthand accounts derived from public discourse.

Note

1. We use identity-first language throughout the manuscript; please see the “Author Note” for additional information about the motivation for this choice.

Acknowledgments

We paraphrase and refer to categories and general ideas throughout the manuscript rather than using direct quotes, so that users’ public tweets are not subject to greater publicity than they may have reasonably expected, in keeping with best-practice guidelines for use of Twitter data in research (Williams et al., 2017). For this reason, content referenced in this manuscript is not attributed to individual users. Instead, we offer our gratitude to the entire #DCD/#dyspraxic community on Twitter for the opportunity to learn from their perspectives. Author Note: The developmental coordination disorder (DCD)/dyspraxic community has not yet established best practices for language in the literature nor expressed strong
preferences in best practices. Therefore, for consistency throughout the manuscript, we have chosen to use identity-first language, in keeping with preferences expressed by the broader disabled community. In doing so, it is not our intention to diminish or invalidate the preferences or perspectives of those who prefer person-first language. We recognize that identity is deeply personal, and affirm that all individual preferences regarding the language used to express identity are valid and should be respected. In addition, we use the term “motor differences” to describe features that may or may not cause problems or disability, depending on a person’s goals, context, and access to appropriate supports or accommodations. We continue to welcome feedback on ways that we can effectively partner with the DCD/dyspraxic community to advocate for respect, acceptance, inclusion, and representation in research. Funding: This research was supported in part by the National Institute of Mental Health (K01-MH107774) and the University of Michigan.

References

