Breaking Barriers: An Innovative Tool to Assess the National and City-Level Physical Activity Policy Development to Practice Disconnect

Eugen Resendiz,1,2 Andrea Ramírez-Varela,3 Juliana Mejía-Grueso,3 Jane Moon,4 Josef Mitáš,5 Ross C. Brownson,2 Deborah Salvo,1,2 and Michael Pratt4

1Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA; 2Prevention Research Center, Brown School, Washington University in St. Louis, St. Louis, MO, USA; 3School of Medicine, Universidad de los Andes, Bogotá, Colombia; 4Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA; 5Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czech Republic

Background: Population-level physical activity increases are improbable without intersectoral collaboration across government levels and sectors to develop and implement physical activity promotion policies. This study aims to provide information about the development of the Interaction between National and Local Government Levels in Development and Implementation of Physical Activity Policies Tool (INTEGRATE PA-Pol). A framework was created to examine the development and implementation of national and subnational physical activity policies and the (mis)alignment between government levels. Methods: The work was conducted in 3 phases: (1) a scoping review was carried out to identify local government physical activity promotion policies and instruments for assessing them, (2) an expert group designed 6 questionnaires, and (3) cognitive response testing was employed for validity testing and item modification with a panel of research and policy experts. Results: The INTEGRATE PA-Pol Tool consists of 6 questionnaires assessing how national and subnational governments collaborate to develop and implement physical activity promotion policies. Conclusion: This tool can assist in better understanding the development and implementation of a public policy monitoring system that will allow for benchmarking and priority setting to comprehend how physical activity promotion policies are designed and executed.

Keywords: INTEGRATE PA-Pol, public policy, public health, framework

Given the numerous health benefits of physical activity, including lower risk of cardiovascular disease, type 2 diabetes, colon and breast cancer, dementia, and premature death,1 many organizations (eg, the World Health Organization, the International Society for Physical Activity and Health, and United Nations Children’s Fund) as well as public health scientists have advocated for the recognition of access to active lifestyle opportunities as a human right.2–6 Despite physical activity known benefits, physical inactivity remains a global pandemic, with 28% of adults and 81% of adolescents not meeting minimum guidelines for health across the world.7 The physical inactivity pandemic is responsible for over 5.3 million deaths per year,8,9 $53.8 billion international dollars each year due to healthcare expenditures, and 13.4 million disability-adjusted life-years yearly.10,11

Considering the magnitude of the physical inactivity problem, individually targeted behavior change strategies to promote physically active lifestyles will likely be insufficient to revert this crisis.12 Indeed, the scale of the problem demands equally large-scale solutions,12 operating at the higher levels of the socioeconomic model of health behavior,13 including policy action in support of population-wide shifts toward healthier, more active lifestyles.12,14 Several health organizations and scientific societies have identified large-scale policy solutions to tackle the physical inactivity pandemic.5,13,15–17 Some of these groups include Europe’s health-enhancing physical activity (HEPA) promotion network,15 the World Health Organization,16 the International Society of Physical Activity and Health,17 the United Nations Educational, Scientific and Cultural Organization,2 and a strong call to action by leading global physical activity scientists as part of the first Lancet Series on Physical Activity published in 2012.8

Physical inactivity is considered a “wicked problem” because it is a complex, multicausal issue without a single, straightforward solution.18,19 Physical inactivity is caused by a myriad of individual (eg, age, income, beliefs, and preferences), social (eg, social support and stigma), and physical and natural environmental (eg, weather and urban design) factors.18,19,20–22 Further, improving health is not the sole motivation for being physically active. For some, physical activity is a source of fun and enjoyment, social interaction, transport (by choice or by necessity, depending on the circumstance of each individual and their environment), or income (eg, active labor, usually as a result of economic necessity and not of a “healthy choice”).6 Further, physical activity does not occur in a single, confined location but occurs in multiple environments (at home, at a gym, at a sports facility, on the street, in parks, etc). None of these locations are within the purview of the health sector.
As such, addressing the pandemic of physical inactivity requires coordinated multisectoral efforts, and physical activity policy must cut across multiple levels of government.18,23 Key relevant sectors beyond health include sports, recreation and leisure (including parks and recreation departments), education, transport, and urban planning.15–18,24 In terms of levels of government, although often physical activity promotion policies are developed at the national level, implementation of the actions included in these policies must occur at the subnational (city) level.25,26 However, others have noted there often seems to be a disconnect between national and subnational (city) physical activity promotion policies.26,27 Aligning national and subnational physical activity policies is thus necessary to optimize the potential of physical activity promotion policies for increasing population physical activity.26,27

The Global Observatory of Physical Activity (GoPA!) was founded in 2012 in direct response to the global call to action on the 2012 Lancet Physical Activity Series8,28 and monitors national-level physical activity levels, surveillance system, research productivity, and policies.29 As reported by GoPA!, during the past decade, there has been an increase in research studies assessing the stages of physical activity promotion policy at the national level,14,30–32 and methods to assess development and implementation have emerged (e.g., HEPA Policy Audit Tool version 2.0, the GoPA! Policy Inventory version 3.0, and the Comprehensive Analysis of Policy on Physical Activity framework).27,33,34 Although progress has been made in assessing national physical activity promotion policies, it is less clear how to systematically assess subnational (city)-level physical activity policies.35,36 Further, methods and instruments for systematically assessing whether national and subnational (city)-level physical activity policies align are currently lacking.35,36 This article aims to fill this gap by describing the development of the Interaction between National and Local Government Levels in Development and Implementation of Physical Activity Policies Tool (INTEGRATE-PA-Pol), a tool to assess the development and implementation of national and subnational (city) physical activity promotion policies and the (mis)alignment across levels. This study is part of GoPA!’s current “Physical Activity Policy at the National and Local Levels” project to explore the feasibility of a global physical activity policy surveillance system.

Methods

Study Design

INTEGRATE-PA-Pol Tool was developed between February 2021 and August 2022 with a mixed methods approach using both quantitative and qualitative methodologies. The development took place in a 3-phase study. Ethics approval was obtained from the Ethics Committee of Universidad de los Andes, Colombia (2022-Approval No. 20220106). All participants provided informed consent to enroll in the study.

Scoping Review of Local Physical Activity Promotion Policies and Policy Assessment Tools

The methodology from a prior scoping review on local government physical activity promotion policies was used.35 Our review expanded the search timeframe, added search items related to subnational government levels (e.g., city and municipal government), and added a step to extract data on how policy science is applied in physical activity promotion policy evaluation at the subnational (city) level (Figure 1).

We searched PubMed, Web of Science, ScienceDirect, PsyCINFO, SPORTDiscus, DOAJ, and JSTOR for English-language peer-reviewed papers between January 2019 and January 2021. Articles were included if (1) the original article or reported research was in English and peer-reviewed, (2) the research exclusively focused on local government physical activity promotion policy, and (3) local governments promoted physical activity promotion policies. Studies that did not meet the inclusion criteria were excluded. Mejía-Grueso and Moon reviewed titles and abstracts for inclusion, and consensus was reached through discussion.

Tool Development

Scoping review results provided topics, potential items, and current policy evaluation tools to guide tool development. Our tool was structured with general sections, pertinent topics, and scales from an in-depth review of previously identified tools. The previous process indicated the instruments and scales needed to fully assess how national and subnational (city) governments interact during physical activity promotion policy development and implementation. After 4 iterative sessions, the research team agreed to match the results from both reviews with items from available instruments and determine which levels of government, stakeholders, and policy process stages our tool would assess.

Validity Testing and Item Adjustment

During this phase, our tools and questionnaires were evaluated for face,37 content,38 and construct39 by 7 GoPA! Network Country Contacts. GoPA! Network Country Contacts are composed of local academic experts and government officials with knowledge and purview of the physical activity and public health landscape (surveillance data, research, and policies) in their countries. They routinely provide data updates on their countries’ physical activity policies as part of their role.39,40 Between February and April 2022, 3 guided group discussion sessions with the GoPA! Country Contacts using cognitive response testing (CRT),41 focused interviews, and “think-aloud” methods took place.

The 7 participants were introduced to all tools and instruments before each group discussion and were asked to provide feedback on each questionnaire, section, and item to understand how the national and subnational (city) levels interact during physical activity promotion policy development and implementation. Resendiz and Mejía-Grueso condensed notes on participants’ concerns, item adjustments, language changes, introductory text, and suggestions for removing or adding items following each session. These remarks were reviewed at a team meeting to agree on the new draft’s questionnaire structure and content improvements. The process was repeated until the core expert research team and Country Contacts approved the final INTEGRATE-PA-Pol Tool.

Data Analysis

Scoping Review

Data were extracted independently through full-text review and abstraction of 11 study characteristics from 3 main categories: physical activity promotion policy-related information, study-specific design, sample and outcome information, and how policy
science tools are used to evaluate the subnational physical activity promotion policy process. A third reviewer (Ramírez-Varela) independently reviewed the article when study selection or data extraction was inconsistent. The reviewers discussed, until they concurred—a joint meeting with the 3 reviewers resolving the <18% inconsistencies across articles.

Initial Tool Development

The data gathered throughout the iterative expert team sessions were condensed and subsequently utilized to generate drafts. The face validity of the instrument was assessed via 3 rounds of review and respective revisions by the GoPA! Country Contacts and the research team staff. Briefly, round 1 changes were mainly concerning terminology (eg, changing the term “city-level policy” to “subnational [city]-level policy” since the meaning of city-level policy varies across country or is irrelevant to some). The second round included some major revisions (eg, removing questions not well understood by all countries and adding explanatory text to open each section of the tool) and additional terminology changes. Finally, only minor adjustments occurred during round 3 of revisions, most of which were word changes to remove jargon and idioms (eg, changing “department” to “office”). The final version of the tool was unanimously approved by all involved groups. The tool was translated into Spanish because most participating cities were from Spanish-speaking Latin American nations in the first data collection phase published elsewhere. Additionally, a later translation to Czech took place for an ongoing first data collection round in the Czech Republic.

Validity Testing and Item Adjustment

Qualitative methods were used to analyze the CRT of the questionnaires. First, group discussion recordings and field notes were reviewed by 2 researchers (Resendiz and Mejía-Grueso) who independently developed summary statements to identify the key issues raised by participants and key suggestions for improvement. Next, the 2 independent researchers coded and condensed the identified issues using a respondent problem matrix developed by Conrad and Blair, that cross-tabulated the 3 response stages (understanding, task performance, and response formatting) and 5 problem classifications (lexical, temporal, logical, computational, and omission or inclusion). This matrix has been used to assess cognitive interview data for public health surveys and scales (see Table 5 in the Supplementary Material [available online] for the definitions of each matrix stage and problem type).
researchers discussed disagreements until a consensus was reached. Microsoft Office Excel 16 was used for response matrix analysis.

Results

Scoping Review

The scoping review assessed 23 articles on physical activity promotion policies from North America, Oceania, Europe, Africa, and Asia. Twenty-two percent of the papers’ main setting was the health care sector, 22% focused on transportation/infrastructure, 9% highlighted public spaces, 9% investigated the workplace, and school setting was studied in 26% of articles. Finally, 30% of the publications explored community physical activity policy, and 17% the sports sector.

Table 1 summarizes the scoping review’s major study characteristics. Policy analysis methods included policy audits (n = 3), descriptive analysis (n = 2), instrument-based impact and implementation evaluation (n = 8), policy reviews (n = 2), and policy statements and strategies (n = 2). Through program evaluation, physical activity promotion policies’ success was measured in 7 studies. Of those studies, 4 used process evaluation, 2 used impact evaluation, and 1 used formative evaluation. Various tools were employed to audit policies at different government levels. These studies used tools and questionnaires, including the WellSAT (version 2.0) and Healthy Afterschool Activity and Nutrition Documentation (HAAND) instrument, the Environmental Policy Assessment and Observation, and the CAPLA-Santé tool (analysis tool for local health-enhancing physical activity policies)—a framework for collecting comprehensive information on local physical activity promotion policies.

Tables 1 to 2 in the Supplementary Material (available online) contain the detailed results of the scoping review.

Tool Development

We identified the need to develop specific questionnaires, sections, and items to identify and assess (1) the political system, governance, and internal structure of the countries and cities of interest; (2) the main sectors involved in developing and implementing physical activity policies at the national and subnational levels and (3) the involvement of national and subnational actors in 5 stages of the policy development cycle.

Five frameworks and tools were selected from an in-depth tool review to guide this tool development: the European HEPA Policy Audit Tool (version 2.0), the Analysis tool for local health-enhancing physical activity policies, the GoPA! Policy Inventory (version 3.0), the Comprehensive Analysis of Policy on Physical Activity framework, and the Physical Activity Environment Policy Index. General sections and relevant scales were mapped out and selected for the developed tool. Several drafts (6) were developed and included selected items from the previously identified tools and additional items assessing key informants’ perceptions of physical activity promotion policy stages and their involvement in policy development from other government levels, and vice versa. Finally, 6 questionnaires were developed and accompanied by a data collection protocol.

The 6 questionnaires are (1) country’s political structure identification, (2) country-specific principal investigator (GoPA! Country Contacts) questionnaire (C1-4), and (3 to 6) perspectives of national- and subnational-level key informants from the health sector and other nonhealth sectors. The INTEGRATE-PA-Pol Tool is available in English in the Supplemental Material (available online) and Spanish upon request.

Questionnaire A was developed for the research team to assess the country’s political and geographical organization in 3 sections: political structure, geographical organization, and government system. **Questionnaire B** is for identifying the key sectors involved in designing and implementing national- and subnational-level physical activity promotion policies in the respective country and city(ies) of administration and is intended to be filled by the country’s GoPA! Country contact, given their expertise on their country’s physical activity policy landscape. This questionnaire includes 2 sections, for identifying (1) the primary sectors in charge of designing, enacting, and implementing physical activity policies at the national and subnational levels and (2) sector-specific informants. **Questionnaires C1 to C4** assess how national and subnational governments collaborate to develop and implement physical activity promotion policies. Their intended audience are key informants from each level (national and subnational). Four questionnaires were distributed to informants, 2 at the national level (C1 and C2) and 2 at the subnational level (C3 and C4). Depending on the position they hold, the government contacts received either the health sector’s (C1 and C3) or the nonhealth sectors’ (e.g., sport, education, and transport) questionnaire (C2 and C4). Each questionnaire includes 4 main sections:

- **Policy Characteristics:** Key informants were asked to identify the most relevant physical activity promotion policy from their sector, describe whether it is a standalone (exclusive) or noncommunicable diseases policy or plan, and whether physical activity promotion is central, important but not central, or secondary.

- **Policy Operational Structure:** National and subnational key informants reported their level of involvement in the 5 stages of the policy process (agenda setting, policy formulation, policy adoption, implementation, and evaluation) for national and subnational physical activity promotion policies. A combination of qualitative open-ended and quantitative questions with binary and 5-point Likert-type response formats was used to examine respondents’ perspectives on their engagement with the other level’s policy and the involvement of the other level in their own level’s policies.

- **Policy Content:** Settings (e.g., work, school, and home), environments (e.g., rural, urban, and neighborhood), and audiences (e.g., children, older adults, and pregnant women) for national and subnational physical activity actions were identified. This was examined using a matrix with binary yes/no choices. To identify other sectors with a tangible responsibility in policy implementation, we used a matrix response format with “yes/no,” “I do not know,” and “not applicable” responses to determine whether the participant did not know or whether the sector did not exist in the country or city of interest.

- **Policy Implementation:** National and subnational informants estimated the extent to which the current physical activity policies have been implemented. Using a 10-point Likert-type response format, with options ranging from “0” to “10,” with a higher score indicating full policy implementation. Additionally, informants are asked to respond whether the policy includes allotted funds for implementation, with response options being “yes/no” and “do not know.” These questions are followed by additional multiple-choice type questions to identify the source and recurrence/timeline of funding.
<table>
<thead>
<tr>
<th>Authors, year</th>
<th>Location</th>
<th>Policy level of applicability</th>
<th>Policy level of influence</th>
<th>Sector</th>
<th>Program evaluation method</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellew et al42</td>
<td>Australia</td>
<td>National–federal</td>
<td>Organizational</td>
<td>Health care, sport, transport, and urban planning</td>
<td>Formative evaluation</td>
<td>—</td>
</tr>
<tr>
<td>Byrd-Williams et al43</td>
<td>Texas, the United States</td>
<td>State</td>
<td>Individual</td>
<td>Schools</td>
<td>Process evaluation</td>
<td>Early Childhood Physical Activity Survey</td>
</tr>
<tr>
<td>Corso et al44</td>
<td>Georgia, the United States</td>
<td>State</td>
<td>Individual</td>
<td>Schools</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Dauenhauer et al45</td>
<td>The United States</td>
<td>State</td>
<td>Individual</td>
<td>Schools</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Escaron et al46</td>
<td>Los Angeles, California, the United States</td>
<td>County</td>
<td>Individual</td>
<td>Schools</td>
<td>Process evaluation</td>
<td>WellSAT (version 2.0) and HAAND instrument</td>
</tr>
<tr>
<td>Heath et al46</td>
<td>Chattanooga, Tennessee, the United States</td>
<td>Metropolitan area</td>
<td>Environmental</td>
<td>Urban planning</td>
<td>Impact evaluation</td>
<td>—</td>
</tr>
<tr>
<td>Hooper et al47</td>
<td>Western Australia</td>
<td>State</td>
<td>Organizational</td>
<td>Urban planning</td>
<td>Process evaluation</td>
<td>—</td>
</tr>
<tr>
<td>Kelly et al48</td>
<td>Inkster, Michigan, the United States</td>
<td>Metropolitan area</td>
<td>Organizational</td>
<td>Health</td>
<td>Process evaluation</td>
<td>—</td>
</tr>
<tr>
<td>Kracht et al49</td>
<td>Louisiana, the United States</td>
<td>State</td>
<td>Individual</td>
<td>Schools</td>
<td>—</td>
<td>EPAO Tool</td>
</tr>
<tr>
<td>Lowe et al</td>
<td>Melbourne, Perth, Brisbane and Sydney, Australia</td>
<td>State</td>
<td>Environmental</td>
<td>Urban policy</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>McGetrick et al50</td>
<td>Alberta and Quebec, Canada</td>
<td>National–federal</td>
<td>Organizational</td>
<td>Health</td>
<td>—</td>
<td>Chronic Disease Prevention Survey</td>
</tr>
<tr>
<td>Medina et al51</td>
<td>Mexico City, Mexico</td>
<td>State</td>
<td>Environmental</td>
<td>Transport and urban planning</td>
<td>Impact evaluation</td>
<td>—</td>
</tr>
<tr>
<td>Nau et al52</td>
<td>Australia</td>
<td>National–federal</td>
<td>Organizational</td>
<td>Health, workplace, sport, transport, and urban planning</td>
<td>—</td>
<td>Audit tool</td>
</tr>
<tr>
<td>Nicholas et al53</td>
<td>Los Angeles, California, the United States</td>
<td>State</td>
<td>Environmental</td>
<td>Transport</td>
<td>—</td>
<td>Integrated Transportation and Health Impact Model</td>
</tr>
<tr>
<td>Peterson et al54</td>
<td>United States of America</td>
<td>Metropolitan area</td>
<td>Environmental</td>
<td>Urban planning</td>
<td>—</td>
<td>CBS HEAL</td>
</tr>
<tr>
<td>Pineo et al55</td>
<td>Multiple worldwide cities</td>
<td>Metropolitan area</td>
<td>Environmental</td>
<td>Urban planning and health</td>
<td>—</td>
<td>UHI Tools</td>
</tr>
<tr>
<td>Poole et al56</td>
<td>Louisiana, USA</td>
<td>State</td>
<td>Organizational</td>
<td>Schools, health, workplace, and urban planning</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Noël Racine et al57</td>
<td>France</td>
<td>County</td>
<td>Organizational</td>
<td>Sport and health</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Racine et al58</td>
<td>France</td>
<td>County</td>
<td>Organizational</td>
<td>Sport, health, and schools</td>
<td>—</td>
<td>CAPLA-Santé tool</td>
</tr>
<tr>
<td>Razak et al59</td>
<td>New South Wales, Australia</td>
<td>National–federal</td>
<td>Individual</td>
<td>Schools</td>
<td>—</td>
<td>Survey—Supplementary Material (available online)</td>
</tr>
<tr>
<td>Sreedhara et al60</td>
<td>United States of America</td>
<td>County</td>
<td>Environmental</td>
<td>Health and transport</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Young et al61</td>
<td>United States of America</td>
<td>State–departments, National–federal</td>
<td>Environmental</td>
<td>Transport</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Zwald et al62</td>
<td>California, Missouri, and Tennessee, USA</td>
<td>National–federal</td>
<td>Environmental</td>
<td>Transport</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Abbreviation: EPAO, environmental policy assessment and observation; HAAND = healthy afterschool activity and nutrition documentation; UHI = urban health indicators; CBS HEAL = community-based policy and environmental supports for healthy eating and active living.
Table 2 Examples of Cross-Session Coding of Problems Detected by Cognitive Response Testing During Focus Group Sessions With GoPA! Country Contacts

<table>
<thead>
<tr>
<th>Problem type</th>
<th>Understanding</th>
<th>Task performance</th>
<th>Response formatting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexical</td>
<td>All country contacts were not understanding the terms ministries/departments/secretariats since they needed to refer to “other sectors.” (S3)</td>
<td>When a policy in question does not only include physical activity but also, for example, sports and recreation, the country contact will presuppose that this policy does not have physical activity as a central topic since it also includes other topics when it does. (S2)</td>
<td>The subnational level (cities) to be assessed were not defined with enough detail for country contacts to identify these. (S1)</td>
</tr>
<tr>
<td>Temporal</td>
<td>On all key contacts surveys, the wording “FROM the sector” was not conveying that we are interested in policies aimed “FOR the sector.” (S3)</td>
<td>When a policy in question does not only include physical activity but also, for example, sports and recreation, the country contact will presuppose that this policy does not have physical activity as a central topic since it also includes other topics when it does. (S2)</td>
<td>How the policy process questions are worded suggests that the contacts should respond only about the previously mentioned policy. However, the responses could not include relevant information about revision, development, or changes of the current or new physical activity policies. (S2)</td>
</tr>
<tr>
<td>Logical</td>
<td>The parenthesis with all the steps of the policy process makes the question about the influence of the national level on each city hard to follow. (S3)</td>
<td>How the section regarding funding is laid out makes it hard to follow what is being asked and at which level. (S3)</td>
<td>In the policy process subsections, questions 1B and 1A seemed to be asking the same regarding involvement in that specific process step. (S3)</td>
</tr>
<tr>
<td>Computational</td>
<td>The term “local (city)” was confusing for some contacts in which the geographical unit of the city does not formally exist. (S2)</td>
<td>Difficulties understanding the difference between SECTOR and OFFICE, for example, health sector versus Department of Health. This is when providing the information for the key contacts or selecting which sector they belong to. (S2)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: GoPA!, Global Observatory of Physical Activity. Note: Issues were identified per session as follows: (S1), session 1; (S2), session 2; (S3), session 3.

Validity Testing and Item Adjustment

The INTEGRATE-PA-Pol Tool’s main objective, structure, and data collection protocol were discussed in the first group discussion. The only concern noted by participants was the use of “local”, when referring to the third-level territorial subnational government. Local refers to the second level of territorial organization in multiple countries (eg, county, municipality, and canton). In other countries, it is understood as the third level (eg, neighborhood, council, and city). This tool aims to assess the interaction between the national and subnational governments from the third level of territorial organization; hence, “local” was changed to “subnational (city) level.”

Before sessions 2 and 3, participants received the revised draft and were prompted to review all questionnaires. In sessions 2 and 3, concerns were identified. The “understanding response stage” had 58% of the problems, including 5 lexical, 1 logical, 2 computational, and 3 omission/inclusion problems—1 logical and 2 computational. In the “task performance” response stage, 1 logical and 2 computational problems were found. Finally, one-third of the errors occurred during “response formatting”—1 temporal, 2 logical, 3 computational, and 1 omission/inclusion. Every issue was resolved when the core expert research team reached a consensus (see Table 6 in the Supplementary Material [available online] for the full list of coding issues). The final draft of the INTEGRATE-PA-Pol Tool was distributed to the GoPA! Country Contacts for content validity assessment and to determine the relevance of each questionnaire, item, and response scale for the global policy surveillance system. Table 2 presents respondent problem matrix issues.

Scoring and Analysis

A suggested scoring and analysis guide was developed including recommended procedures for generating quantitative summaries of the information collected by this tool, and to help users in determining whether national and subnational (city) policies are aligned or misaligned. The Suggested Scoring and Analysis Guide includes recommended steps for determining alignment/misalignment is included in the Supplementary Material (available online).

Discussion

A group of experts developed INTEGRATE-PA-Pol in 3 phases to assess governmental alignment or misalignment during the policy process. This study produced a tool with a strong face, content validity, and feasibility for low- to medium-income Latin American countries. The application of CRT methods during focus group sessions with GoPA! Country Contacts, who are physical activity...
expert researchers, policymakers, and members of international networks enabled the tailoring of the tool to the various actors involved in the physical activity promotion policy development process. During the 3 response stages, the focus group sessions revealed issues with the evolving questionnaires’ structure, items, and wording. The tool proceeded through multiple revisions before the expert research team and Country Contacts reached a consensus, resulting in a valid instrument for a global physical activity policy surveillance system.

When building the INTEGRATE-PA-Pol Tool, the primary challenge was examining important actors’ cross-level perspectives during the policy process stages. Subnational government informants’ perspectives and knowledge must be assessed to reduce the gap between efficiently implemented physical activity promotion policies’ subnational (city) applicability and horizontal and vertical scale-up.12 Because various contextual nuances influence subnational (city) physical activity policies at the subnational level,12 it was critical to allow key informants to provide general and detailed answers that could allow us to understand these nuances. An excellent example of these challenges is Country Contacts, who participated in the focus group, stated that while some sectors may exist at the national level, they do not exist at the city level. As a result, some sections of the questionnaires for government key informants provided response alternatives to distinguish between not knowing the answer and a sector or setting that does not exist at their level.

Previous research employing the HEPA Policy Audit Tool (version 2.0.15) has shown that subnational (city) governments can influence physical activity promotion policy development and implementation.48 Thus, designing a tool that could evaluate various countries was crucial. The difference in geographic and political organization across countries immediately affected the tool’s primary purpose because it was essential to precisely identify the city-level subnational level of interest for the study. In order to enable global physical activity policy surveillance through the tool’s prospective collaboration with the GoPA! observatory, findings across nations and localities with different physical activity promotion policy efforts by geographic area and income group must be comparable.

The results from using the INTEGRATE-PA-Pol Tool will let researchers and policymakers determine the degree of misalignment and where it is occurring—specific sectors and specific stages of the policy to implementation process—for their country and assessed cities. Furthermore, these results can contribute to the identification of current policy gaps, improve national-local policy translation, and understand which step of the policy process the national and subnational levels should engage or strengthen their engagement, as well as which nonhealth sectors through which physical activity are supported, should the health sector build strong partnerships.

Strengths and Limitations

The key strengths of this study are (1) a first-of-its-kind tool to assess subnational (city)-level role in the physical activity policy process; (2) the use of CRT to tailor the tool so different types of actors involved in the physical activity promotion policy development and implementation process; (3) the applicability of the tool to assess a wide range of geographic and political contexts globally; and (4) the ability to assess various aspects of the policies (characteristics, operational structure, content, implementation, and funding), their alignment or misalignment across levels, and the cross-level perspectives of the role of each level during the policy process.

Some key limitations of this study and developed tool should be considered when interpreting and using our findings. First, the scoping review did not include gray literature on policy development and implementation tools outside our field. Limitations for questionnaire development and validity testing include employing frameworks and instruments created to examine high-income country policies, which may not apply in different contexts. Although these were used as a baseline for developing the questionnaire and tested with country contacts from low-to-middle-income countries for validity, all items can be improved for a global surveillance system to generalize tool results. The tool requires a combination of tools and questions rather than a single instrument, making collecting data more complicated as each country requires between 3 and 12 key informants. Thus, recruitment and data collection are time-consuming, especially when the research team has little rapport with government key informants, making country contacts essential to this process.

Additionally, the identification of only one key informant per level and sector, and the method of selecting key informants through GoPA! Country Contacts are limitations, but requesting input from multiple informants for identifying the best-suited national- and subnational-level respondents is not feasible, and GoPA! Country Contacts are by definition among the most well-connected and informed actors within their countries regarding the physical activity and public health landscape. In addition, it is important to note that the results generated by this tool may exhibit confirmation bias, as it may only collect incomplete or selectively chosen information that aligns with the informant’s preexisting beliefs or ideas about cross-level collaboration and specific policy details.

Finally, the tool does not collect demographic characteristics of the overall country or subnational region being assessed. However, this does not preclude users from gathering this information from other public sources, as it can provide additional context and guide result interpretation.

Conclusions

Using the INTEGRATE-PA-Pol Tool will help develop and implement a global public policy monitoring system for benchmarking and priority setting to understand physical activity policy development and implementation. These systems can explain vertical and horizontal government ties in complex political systems, where regions, governments, and social groups collaborate on policy formation and implementation. This policy assessment tool development project supported low-to-middle-income countries in closing data and knowledge gaps through capacity building and equitable multinational collaborations. Further, if implemented widely across a variety of countries and cities, this tool has the potential to provide policymakers, implementers, and academics with unique insights about their country and cities’ physical activity policy development and implementation. These insights can provide the much-needed evidence to advocate for “health-in-all policies” across designated sectors and the recognition of physical activity as a human right.3,51

Acknowledgments

We thank the Global Observatory of Physical Activity (GoPA!) Country Contacts who assisted in developing the tool: Nubia Yaneth Ruiz Gómez, Rafael Alexander Leandro Gómez, Inés Revueltta Sánchez, Gerardo
Alonso Araya Vargas, Angélica María Ochoa Avilés, Raúl Francisco Pérez Tasigchana, and Alejandra Jauregui. **Funding Source:** This research was funded by the Fondo de Apoyo a Profesores Asistentes—FAPA at Universidad de los Andes, Colombia; University of California San Diego, the United States; and Universidade Federal de Pelotas, Brazil. Deborah Salvo and Eugen Resendiz work was partly supported by Health Promotion and Disease Prevention Research Centers supported by Cooperative Agreement Number U48DP006395 from the Centers for Disease Control and Prevention. The findings and conclusions in this article are those of the authors and do not necessarily represent the official position of the funders.

Author Contributions: Conceptualization and project coordination and Andrea Ramírez-Varela. Pratt. Eugen Resendiz, Andrea Ramírez-Varela, Deborah Salvo, and Michael Pratt. *Data collection:* Eugen Resendiz, Josef Mitáš, Juliana Mejía-Grueso, and Andrea Ramírez-Varela. *Data analysis:* Eugen Resendiz and Juliana Mejía-Grueso. **Writing of the first draft of the manuscript:** Eugen Resendiz. **Revision of the first draft of the manuscript:** Michael Pratt, Deborah Salvo, Andrea Ramírez-Varela, Josef Mitáš, and Juliana Mejía-Grueso. *Revised and approval of the final version of the text:* All authors.

References

25. ISPAH. ISPAH’s eight investments that work for physical activity. *International Society for Physical Activity and Health.* 2021;18:625–630.

