Search Results

You are looking at 11 - 13 of 13 items for

  • Author: Abbey C. Thomas x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Differences in Health-Related Quality of Life Among Patients After Knee Injury

Rachel R. Kleis, Janet E. Simon, Michael Turner, Luzita I. Vela, Abbey C. Thomas, and Phillip A. Gribble

While knee injury-related pain and functional limitations are common in the physically active, the impact on general health is not well documented. Further, it is not known how much these outcomes differ among individuals that did or did not have surgery following the knee injury, as well as compared to those without knee injury history. We examined differences in health-related quality of life (HRQoL) and general health among patients after knee surgery, knee injury that did not require surgery, and healthy controls. Knee surgery participants reported higher body mass index and lower SF-8 physical component scores than knee nonsurgery and control (p < .001 all comparisons) groups. Knee nonsurgery participants had lower SF-8 physical component scores (p = .01) than control participants. Patients after knee surgery report more adverse health effects than those with nonsurgically treated knee injuries.

Restricted access

Females Decrease Vertical Ground Reaction Forces Following 4-Week Jump-Landing Feedback Intervention Without Negative Affect on Vertical Jump Performance

Hayley M. Ericksen, Caitlin Lefevre, Brittney A. Luc-Harkey, Abbey C. Thomas, Phillip A. Gribble, and Brian Pietrosimone

Context: High vertical ground reaction force (vGRF) when initiating ground contact during jump landing is one biomechanical factor that may increase risk of anterior cruciate ligament injury. Intervention programs have been developed to decrease vGRF to reduce injury risk, yet generating high forces is still critical for performing dynamic activities such as a vertical jump task. Objective: To evaluate if a jump-landing feedback intervention, cueing a decrease in vGRF, would impair vertical jump performance in a separate task (Vertmax). Design: Randomized controlled trial. Patients (or Other Participants): Forty-eight recreationally active females (feedback: n = 31; 19.63 [1.54] y, 1.6 [0.08] cm, 58.13 [7.84] kg and control: n = 15; 19.6 [1.68] y, 1.64 [0.05] cm, 60.11 [8.36] kg) participated in this study. Intervention: Peak vGRF during a jump landing and Vertmax were recorded at baseline and 4 weeks post. The feedback group participated in 12 sessions over the 4-week period consisting of feedback provided for 6 sets of 6 jumps off a 30-cm box. The control group was instructed to return to the lab 28 days following the baseline measurements. Main Outcome Measures: Change scores (postbaseline) were calculated for peak vGRF and Vertmax. Group differences were evaluated for peak vGRF and Vertmax using a Mann–Whitney U test (P < .05). Results: There were no significant differences between groups at baseline (P > .05). The feedback group (−0.5 [0.3] N/kg) demonstrated a greater decrease in vGRF compared with the control group (0.01 [0.3] N/kg) (t(46) = −5.52, P < .001). There were no significant differences in change in Vertmax between groups (feedback = 0.9 [2.2] cm, control = 0.06 [2.1] cm; t(46) = 0.46, P = .64). Conclusions: While the feedback intervention was effective in decreasing vGRF when landing from a jump, these participants did not demonstrate changes in vertical jump performance when assessed during a different task. Practitioners should consider implementing feedback intervention programs to reduce peak vGRF, without worry of diminished vertical jump performance.

Restricted access

Knee Surgery Is Associated With Greater Odds of Knee Osteoarthritis Diagnosis

Abbey C. Thomas, Janet E. Simon, Rachel Evans, Michael J. Turner, Luzita I. Vela, and Phillip A. Gribble

Context: Knee osteoarthritis (OA) frequently develops following knee injury/surgery. It is accepted that knee injury/surgery precipitates OA with previous studies examining this link in terms of years after injury/surgery. However, postinjury OA prevalence has not been examined by decade of life; thereby, limiting our understanding of the age at which patients are diagnosed with posttraumatic knee OA. Objective: Evaluate the association between the knee injury and/or surgical history, present age, and history of receiving a diagnosis of knee OA. Design: Cross-sectional survey. Setting: Online survey. Participants: A total of 3660 adults were recruited through ResearchMatch©. Of these, 1723 (47.1%) were included for analysis due to history of (1) knee surgery (SURG: n = 276; age = 53.8 [15.3] y; and body mass index [BMI] = 29.9 [8.0] kg/m2), (2) nonsurgical knee injury (INJ: n = 449; age = 46.0 [15.6] y; and BMI = 27.5 [6.9] kg/m2), or (3) no knee injury (CTRL: n = 998; age = 44.0 [25.2] y; and BMI = 26.9 [6.6] kg/m2). Respondents were subdivided by decade of life (20–29 through 70+). Intervention: An electronic survey regarding knee injury history, treatment, and diagnosis of knee OA. Main Outcome Measures: Binary logistic regression determined the association between knee surgical status and OA by decade of life. Participants with no histories of OA or lower-extremity injury were the referent categories. BMI was a covariate in all analyses. Results: SURG respondents were more likely to report having knee OA than CTRL for all age groups (odds ratios: 11.43–53.03; P < .001). INJ respondents aged 30 years and older were more likely to have OA than CTRL (odds ratios: 2.99–14.22; P < .04). BMI influenced associations for respondents in their 50s (P = .001) and 60s (P < .001) only. Conclusions: INJ increased the odds of reporting a physician diagnosis of knee OA in adults as young as 30 to 39 years. Importantly, SURG yielded 3 to 4 times greater odds of being diagnosed with knee OA compared with INJ in adults as young as 20 to 29 years. Delaying disease onset in these young adults is imperative to optimize the quality of life long term after surgery.