Search Results

You are looking at 11 - 19 of 19 items for

  • Author: Brian Pietrosimone x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Nonlinear Dynamic Measures for Evaluating Postural Control in Individuals With and Without Chronic Ankle Instability

Masafumi Terada, Megan Beard, Sara Carey, Kate Pfile, Brian Pietrosimone, Elizabeth Rullestad, Heather Whitaker, and Phillip Gribble

This study aimed to compare time-to-boundary and sample entropy during a single-leg balance task between individuals with chronic ankle instability (CAI), lateral ankle sprain copers, and healthy controls. Twenty-two participants with CAI, 20 lateral ankle sprain copers, and 24 healthy controls performed a single-leg balance task during an eyes-closed condition. Participants with CAI exhibited lower time-to-boundary values compared with lateral ankle sprain copers and healthy controls. However, we did not find differences in sample entropy variables between cohorts. A decrease in time-to-boundary values in participants with CAI indicated that CAI may constrain the ability of the sensorimotor system to maintain the center of pressure within the boundaries of the base of support. However, the regularity of the center of pressure velocity time series appears not to be altered in the CAI cohort in this study.

Restricted access

Intrinsic Foot Muscle Morphology in Active Runners With and Without a History of Exercise-Related Lower Leg Pain

Aliza K. Nedimyer, Brian G. Pietrosimone, Brittney A. Luc-Harkey, and Erik A. Wikstrom

Our objective was to quantify the functional and morphological characteristics of the plantar intrinsic muscles in those with and without a history of exercise-related lower leg pain (ERLLP). Thirty-two active runners—24 with a history of ERLLP—volunteered. Strength of the flexor hallucis brevis and flexor digitorum brevis, postural control, and navicular drop were recorded. Morphology of the abductor hallucis, flexor digitorum brevis, and flexor hallucis brevis muscles were captured using ultrasonography. Those with ERLLP had smaller flexor hallucis brevis morphology measures (p ≤ .015) and a greater reliance on visual information while balancing (p = .05). ERLLP appears to alter intrinsic muscle function and morphology.

Restricted access

The Role of Disinhibitory Modalities in Joint Injury Rehabilitation

Michael G. Dolan, Brian G. Pietrosimone, J. Ty Hopkins, and Christopher D. Ingersoll

Restricted access

Relationship Between Gluteal Muscle Strength, Corticospinal Excitability, and Jump-Landing Biomechanics in Healthy Women

Adam S. Lepley, Allison M. Strouse, Hayley M. Ericksen, Kate R. Pfile, Phillip A. Gribble, and Brian G. Pietrosimone

Context:

Components of gluteal neuromuscular function, such as strength and corticospinal excitability, could potentially influence alterations in lower extremity biomechanics during jump landing.

Objective:

To determine the relationship between gluteal muscle strength, gluteal corticospinal excitability, and jump-landing biomechanics in healthy women.

Setting:

University laboratory.

Design:

Descriptive laboratory study.

Participants:

37 healthy women (21.08 ± 2.15 y, 164.8 ± 5.9 cm, 65.4 ± 12.0 kg).

Interventions:

Bilateral gluteal strength was assessed through maximal voluntary isometric contractions (MVIC) using an isokinetic dynamometer. Strength was tested in the open chain in prone and side-lying positions for the gluteus maximus and gluteus medius muscles, respectively. Transcranial magnetic stimulation was used to elicit measures of corticospinal excitability. Participants then performed 3 trials of jump landing from a 30-cm box to a distance of 50% of their height, with an immediate rebound to a maximal vertical jump. Each jump-landing trial was video recorded (2-D) and later scored for errors.

Main Outcome Measures:

MVICs normalized to body mass were used to assess strength in the gluteal muscles of the dominant and nondominant limbs. Corticospinal excitability was assessed by means of active motor threshold (AMT) and motor-evoked potentials (MEP) elicited at 120% of AMT. The Landing Error Scoring System (LESS) was used to evaluate jump-landing biomechanics.

Results:

A moderate, positive correlation was found between dominant gluteus maximus MEP and LESS scores (r = .562, P = .029). No other significant correlations were observed for MVIC, AMT, or MEP for the gluteus maximus and gluteus medius, regardless of limb.

Conclusions:

The findings suggest a moderate relationship between dominant gluteus maximus corticospinal excitability and a clinical measure of jump-landing biomechanics. Further research is required to substantiate the findings and expand our understanding of the central nervous system’s role in athletic movement.

Restricted access

Effects of Menthol-Based Counterirritant on Quadriceps Motoneuron-Pool Excitability

Daniel H. Huffman, Brian G. Pietrosimone, Terry L. Grindstaff, Joseph M. Hart, Susan A. Saliba, and Christopher D. Ingersoll

Context:

Motoneuron-pool facilitation after cryotherapy may be mediated by stimulation of thermoreceptors surrounding a joint. It is unknown whether menthol counterirritants, which also stimulate thermoreceptors, have the same effect on motoneuron-pool excitability (MNPE).

Objective:

To compare quadriceps MNPE after a menthol-counterirritant application to the anterior knee, a sham counterirritant application, and a control treatment in healthy subjects.

Design:

A blinded, randomized controlled laboratory study.

Setting:

Laboratory.

Participants:

Thirty healthy subjects (16 m, 14 f; 24.1 ± 3.9 y, 170.6 ± 11.4 cm, 72.1 ± 15.6 kg) with no history of lower extremity surgery volunteered for this study.

Intervention:

Two milliliters of menthol or sham counterirritant was applied to the anterior knee; control subjects received no intervention.

Main Outcome Measures:

The average vastus medialis normalized Hoffmann reflex (Hmax:Mmax ratio) was used to measure MNPE. Measurements were recorded at 5, 15, 25, and 35 minutes postintervention and compared with baseline measures.

Results:

Hmax:Mmax ratios for all groups significantly decreased over time (F 4,108 = 10.52, P < .001; menthol: baseline = .32 ± .20, 5 min = .29 ± .18, 15 min = .27 ± .18, 25 min = .28 ± .19, 35 min = .27 ± .18; sham: baseline = .46 ± .26, 5 min = .36 ± .20, 15 min = .35 ± .19, 25 min = .35 ± .20, 35 min = .34 ± .18; control: baseline = .48 ± .32, 5 min = .37 ± .27, 15 min = .37 ± .27, 25 min = .37 ± .29, 35 min = .35 ± .28). No significant Group × Time interaction or group differences in Hmax:Mmax were found.

Conclusions:

Menthol did not affect quadriceps MNPE in healthy subjects.

Restricted access

Reliability of Corticomotor Excitability in Leg and Thigh Musculature at 14 and 28 Days

Brittney A. Luc, Adam S. Lepley, Michael A. Tevald, Phillip A. Gribble, Donald B. White, and Brian G. Pietrosimone

Context:

Alterations in corticomotor excitability are observed in a variety of patient populations, including the musculature surrounding the knee and ankle after joint injury. Active motor threshold (AMT) and motor-evoked-potential (MEP) amplitudes elicited through transcranial magnetic stimulation (TMS) are outcome measures used to assess corticomotor excitability and have been deemed reliable in upper-extremity musculature. However, there are few studies assessing the reliability of TMS measures in lower-extremity musculature.

Objective:

To determine the intersession reliability of AMT and MEP amplitudes over 14 and 28 d in the quadriceps and fibularis longus (FL).

Design:

Descriptive laboratory study.

Setting:

University laboratory

Participants:

20 able-bodied volunteers (10 men, 10 women; 22.35 ± 2.3 y, 1.71 ± 0.11 m, 73.61 ± 16.77 kg).

Main Outcome Measures:

AMT and MEP amplitudes were evaluated at 95%, 100%, 105%, 110%, 120%, 130%, and 140% of AMT in the dominant and nondominant quadriceps and FL. Interclass correlation coefficients (ICCs) were used to assess reliability for absolute agreement and internal consistency between baseline and 2 follow-up sessions at 14 and 28 d postbaseline. Each ICC was fit with the best-fit straight line or parabola to smooth out noise in the observations and best determine if a pattern existed in determining the most reliable MEP value.

Results:

All muscles yielded strong ICCs between baseline and both time points for AMT. MEPs in both the quadriceps and FL produced varying degrees of reliability, with the greatest reliability demonstrated on day 28 at 130% and 140% of AMT in the quadriceps and FL, respectively. The dominant FL muscle showed a significant pattern; as TMS intensity increased, MEP reliability increased.

Conclusion:

TMS can be used to reliably identify corticomotor alterations after therapeutic interventions, as well as monitor disease progression.

Restricted access

Feasibility of Mobile Application-Delivered Mindfulness Meditation for Individuals After Anterior Cruciate Ligament Reconstruction

Shelby Baez, Francesca Genoese, Elaine Reiche, Matthew Harkey, Christopher Kuenze, Jason Moser, and Brian Pietrosimone

Mindfulness meditation (MM) has decreased kinesiophobia in patients with knee pathologies. Mobile application-delivered MM (Mobile MM) may reduce kinesiophobia in individuals after anterior cruciate ligament reconstructions (ACLR). The purpose of this study was to examine the feasibility (i.e., retention, adherence, and acceptability) and preliminary efficacy of a 4-week Mobile MM intervention in individuals with a history of ACLR. Nine participants ≥1 year post unilateral ACLR completed 12 sessions of Mobile MM over 4 weeks via the Headspace mobile application that were facilitated remotely through a Health Insurance Portability and Accountability ACT of 1996 (HIPAA) compliant teleconference system. Participant retention of 100% and intervention adherence of 100% were observed. Participants reported moderate to high acceptability for the Mobile MM. A large between-group effect size of 1.6 [0.13, 2.98] in the Tampa Scale of Kinesiophobia-11 change score was observed. Mobile MM is a feasible intervention to address kinesiophobia in individuals with a history of ACLR.

Restricted access

Females Decrease Vertical Ground Reaction Forces Following 4-Week Jump-Landing Feedback Intervention Without Negative Affect on Vertical Jump Performance

Hayley M. Ericksen, Caitlin Lefevre, Brittney A. Luc-Harkey, Abbey C. Thomas, Phillip A. Gribble, and Brian Pietrosimone

Context: High vertical ground reaction force (vGRF) when initiating ground contact during jump landing is one biomechanical factor that may increase risk of anterior cruciate ligament injury. Intervention programs have been developed to decrease vGRF to reduce injury risk, yet generating high forces is still critical for performing dynamic activities such as a vertical jump task. Objective: To evaluate if a jump-landing feedback intervention, cueing a decrease in vGRF, would impair vertical jump performance in a separate task (Vertmax). Design: Randomized controlled trial. Patients (or Other Participants): Forty-eight recreationally active females (feedback: n = 31; 19.63 [1.54] y, 1.6 [0.08] cm, 58.13 [7.84] kg and control: n = 15; 19.6 [1.68] y, 1.64 [0.05] cm, 60.11 [8.36] kg) participated in this study. Intervention: Peak vGRF during a jump landing and Vertmax were recorded at baseline and 4 weeks post. The feedback group participated in 12 sessions over the 4-week period consisting of feedback provided for 6 sets of 6 jumps off a 30-cm box. The control group was instructed to return to the lab 28 days following the baseline measurements. Main Outcome Measures: Change scores (postbaseline) were calculated for peak vGRF and Vertmax. Group differences were evaluated for peak vGRF and Vertmax using a Mann–Whitney U test (P < .05). Results: There were no significant differences between groups at baseline (P > .05). The feedback group (−0.5 [0.3] N/kg) demonstrated a greater decrease in vGRF compared with the control group (0.01 [0.3] N/kg) (t(46) = −5.52, P < .001). There were no significant differences in change in Vertmax between groups (feedback = 0.9 [2.2] cm, control = 0.06 [2.1] cm; t(46) = 0.46, P = .64). Conclusions: While the feedback intervention was effective in decreasing vGRF when landing from a jump, these participants did not demonstrate changes in vertical jump performance when assessed during a different task. Practitioners should consider implementing feedback intervention programs to reduce peak vGRF, without worry of diminished vertical jump performance.

Restricted access

Arthrogenic Muscle Inhibition Following Anterior Cruciate Ligament Injury

Brian Pietrosimone, Adam S. Lepley, Christopher Kuenze, Matthew S. Harkey, Joseph M. Hart, J. Troy Blackburn, and Grant Norte

Arthrogenic muscle inhibition (AMI) is a common impairment in individuals who sustain an anterior cruciate ligament (ACL) injury. The AMI causes decreased muscle activation, which impairs muscle strength, leading to aberrant movement biomechanics. The AMI is often resistant to traditional rehabilitation techniques, which leads to persistent neuromuscular deficits following ACL reconstruction. To better treat AMI following ACL injury and ACL reconstruction, it is important to understand the specific neural pathways involved in AMI pathogenesis, as well as the changes in muscle function that may impact movement biomechanics and long-term structural alterations to joint tissue. Overall, AMI is a critical factor that limits optimal rehabilitation outcomes following ACL injury and ACL reconstruction. This review discusses the current understanding of the: (1) neural pathways involved in the AMI pathogenesis following ACL injury; (2) consequence of AMI on muscle function, joint biomechanics, and patient function; and (3) development of posttraumatic osteoarthritis. Finally, the authors review the evidence for interventions specifically used to target AMI following ACL injury.