Search Results

You are looking at 11 - 20 of 22 items for

  • Author: Carl M. Maresh x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Jaci L. VanHeest, Jim Stoppani, Tim P. Scheett, Valerie Collins, Melissa Roti, Jeffrey Anderson, George J. Allen, Jay Hoffman, William J. Kraemer, and Carl M. Maresh

Objective:

To determine the effects of Vicoprofen® and ibuprofen on aerobic performance, agility, and pain after exercise-induced muscle damage.

Design:

Double-blind randomized, placebo-controlled, repeated-dose clinical trial.

Setting:

Human-performance and sports-medicine laboratory.

Participants:

36 healthy men.

Methods and Measures:

Baseline testing was performed, 72 hours after which subjects performed eccentric exercise to induce muscle damage. They were evaluated for pain 24 hours postdamage and placed randomly into 3 groups: Vicoprofen (VIC), ibuprofen, or placebo (P). Postdamage testing was performed every day for 5 days. Subjects performed an economy run and a t-agility test to determine exercise performance.

Results:

The drugs had no significant effect on performance throughout the 5-day evaluation period. Pain was lower at days 4 and 5 in the VIC group than in P.

Conclusions:

It appears that Vicoprofen reduced pain after muscle damage, but the drug interventions did not enhance performance in aerobic and agility tasks.

Restricted access

Carl M. Maresh, Lawrence E. Armstrong, Jay R. Hoffman, Daniel R. Hannon, Catherine L. V. Gabaree, Michael F. Bergeron, Michael J. Whittlesey, and Michael R. Deschenes

In the present study, the effects of an increased daily dose of a dietary supplement (ATP-E, 0.2 g · kg 1 · day 1 ) on Wingate test performance were examined in 12 men (21 ± 1.6 years) prior to and following 14 days of supplement and placebo ingestion. A double-blind and counterbalanced design was used. Results revealed higher (p < .007) preexercise blood ATP (95.4 ± 10.5 μmol · dl 1 ) for the entire group following 14 days of ATP-E ingestion compared to placebo measures (87.6 ± 10.9 μmol · dl 1 ). Mean power (667 ± 73 W) was higher (p < .008) after 14 days of ATP-E ingestion versus placebo (619 ± 67 W). Peak plasma lactate was lower (p < .07) after 14 days of ATP-E ingestion (14.9 ± 2.8 mmol · L 1 ) compared to placebo (16.3 ± 1.6 mmol · L 1 ). These data suggested that the improvement in 30-s Wingate test performance in this group may be related to the increased dose of ATP-E.

Restricted access

Sharon L. Miller, P. Courtney Gaine, Carl M. Maresh, Lawrence E. Armstrong, Cara B. Ebbeling, Linda S. Lamont, and Nancy R. Rodriguez

This study determined the effect of nutritional supplementation throughout endurance exercise on whole-body leucine kinetics (leucine rate of appearance [Ra], oxidation [Ox], and nonoxidative leucine disposal [NOLD]) during recovery. Five trained men underwent a 2-h run at 65% VO2max, during which a carbohydrate (CHO), mixed protein-carbohydrate (milk), or placebo (PLA) drink was consumed. Leucine kinetics were assessed during recovery using a primed, continuous infusion of 1-13C leucine. Leucine Ra and NOLD were lower for milk than for PLA. Ox was higher after milk-supplemented exercise than after CHO or PLA. Although consuming milk during the run affected whole-body leucine kinetics, the benefits of such a practice for athletes remain unclear. Additional studies are needed to determine whether protein supplementation during exercise can optimize protein utilization during recovery.

Restricted access

Andrew C. Fry, William J. Kraemer, Michael H. Stone, Beverly J. Warren, Jay T. Kearney, Carl M. Maresh, Cheryl A. Weseman, and Steven J. Fleck

To examine the effects of 1 week of high volume weightlifting and amino acid supplementation, 28 elite junior male weightlifting received either amino acid (protein) or lactose (placebo) capsules using double-blind procedures. weightlifting test sessions were performed before and after 7 days of high volume training sessions. Serum concentrations of testosterone (Tes), cortisol (Cort), and growth hormone (GH) as well as whole blood iactate (HLa) were determined from blood draws. Lifting performance was not altered for either group after training, although vertical jump performance decreased for both groups. Both tests elicited significantly elevated exercise-induced hormonal and HLa concentrations. Significant decreases in postexercise hormonal and HLa concentrations from Test 1 to Test 2 were observed for both groups. Tes concentrations at 7 a.m. and preexercise decreased for both groups from Test 1 to Test 2, while the placebo group exhibited a decreased 7 a.m. Tes/ Cort. These data suggest that amino acid supplementation does not influence resting or exercise-induced hormonal responses to 1 week of high volume weight training, but endocrine responses did suggest an impending overtraining syndrome.

Restricted access

Douglas J. Casa, Carl M. Maresh, Lawrence E. Armstrong, Stavros A. Kavouras, Jorge A. Herrera-Soto, Frank T. Hacker Jr., Timothy P. Scheett, and James Stoppani

The purpose of this study was to determine if intravenous fluid rehydration, versus oral rehydration. during a brief period (20 min) differentially affects plasma ACTH, cortisol, and norepinephrine concentrations during subsequent exhaustive exercise in the heat. Following dehydration (DHY) to −4% of body weight, 8 nonacclimated highly trained males (age = 23.5 ± 1.2 years, V̇O2peak = 61.4±0.8 ml · kg · min−1, % body fat = 13.5±0.6%) cycled to exhaustion at 74% V̇O2peak in 36.8 °C on three different occasions. These included: (a) no fluid (NF), where no fluid was provided during the rehydration period; (b) DRINK, where oral rehydration (0.45% NaCl) was provided equal to 50% of the prior DHY; and (c) IV, where intravenous infusion (0.45% NaCl) was provided equal to 50%’ of the prior DHY. Exercise time to exhaustion was not different p = .07) between the DRINK (34.86 ±4.01) and IV (29.48 ± 3.50) trials, but both were significantly p < .05) longer than the NF (18.95 ± 2.73) trial. No differences (p > .05) were found for any of the hormone measures among trials. The endocrine responses at exhaustion were similar regardless of hydration state and mode of rehydration, but rehydration prolonged the exercise time to exhaustion.

Restricted access

Lawrence E. Armstrong, Amy C. Pumerantz, Kelly A. Fiala, Melissa W. Roti, Stavros A. Kavouras, Douglas J. Casa, and Carl M. Maresh

It is difficult to describe hydration status and hydration extremes because fluid intakes and excretion patterns of free-living individuals are poorly documented and regulation of human water balance is complex and dynamic. This investigation provided reference values for euhydration (i.e., body mass, daily fluid intake, serum osmolality; M ± SD); it also compared urinary indices in initial morning samples and 24-hr collections. Five observations of 59 healthy, active men (age 22 ± 3 yr, body mass 75.1 ± 7.9 kg) occurred during a 12-d period. Participants maintained detailed records of daily food and fluid intake and exercise. Results indicated that the mean total fluid intake in beverages, pure water, and solid foods was >2.1 L/24 hr (range 1.382–3.261, 95% confidence interval 0.970–3.778 L/24 hr); mean urine volume was >1.3 L/24 hr (0.875–2.250 and 0.675–3.000 L/24 hr); mean urine specific gravity was >1.018 (1.011–1.027 and 1.009–1.030); and mean urine color was ≥4 (4–6 and 2–7). However, these men rarely (0–2% of measurements) achieved a urine specific gravity below 1.010 or color of 1. The first morning urine sample was more concentrated than the 24-h urine collection, likely because fluids were not consumed overnight. Furthermore, urine specific gravity and osmolality were strongly correlated (r2 = .81–.91, p < .001) in both morning and 24-hr collections. These findings provide euhydration reference values and hydration extremes for 7 commonly used indices in free-living, healthy, active men who were not exercising in a hot environment or training strenuously.

Restricted access

Matthew S. Ganio, Jennifer F. Klau, Elaine C. Lee, Susan W. Yeargin, Brendon P. McDermott, Maxime Buyckx, Carl M. Maresh, and Lawrence E. Armstrong

The purpose of this study was to compare the effects of a carbohydrate-electrolyte plus caffeine, carnitine, taurine, and B vitamins solution (CE+) and a carbohydrate-electrolyte-only solution (CE) vs. a placebo solution (PLA) on cycling performance and maximal voluntary contraction (MVC). In a randomized, double-blind, crossover, repeated-measures design, 14 male cyclists (M ± SD age 27 ± 6 yr, VO2max 60.4 ± 6.8 ml · kg−1 · min−1) cycled for 120 min submaximally (alternating 61% ± 5% and 75% ± 5% VO2max) and then completed a 15-min performance trial (PT). Participants ingested CE+, CE, or PLA before (6 ml/kg) and every 15 min during exercise (3 ml/kg). MVC was measured as a single-leg isometric extension (70° knee flexion) before (pre) and after (post) exercise. Rating of perceived exertion (RPE) was measured throughout. Total work accumulated (KJ) during PT was greater (p < .05) in CE+ (233 ± 34) than PLA (205 ± 52) but not in CE (225 ± 39) vs. PLA. MVC (N) declined (p < .001) from pre to post in PLA (988 ± 213 to 851 ± 191) and CE (970 ± 172 to 870 ± 163) but not in CE+ (953 ± 171 to 904 ± 208). At Minutes 60, 90, 105, and 120 RPE was lower in CE+ (14 ± 2, 14 ± 2, 12 ± 1, 15 ± 2) than in PLA (14 ± 2, 15 ± 2, 14 ± 2, 16 ± 2; p < .001). CE+ resulted in greater total work than PLA. CE+, but not PLA or CE, attenuated pre-to-post MVC declines. Performance increases during CE+ may have been influenced by lower RPE and greater preservation of leg strength during exercise in part as a result of the hypothesized effects of CE+ on the central nervous system and skeletal muscle.

Restricted access

Michael F. Bergeron, Carl M. Maresh, Lawrence E. Armstrong, Joseph F. Signorile, John W. Castellani, Robert W. Kenefick, Kent E. LaGasse, and Deborah A. Riebe

Twenty (12 male and 8 female) tennis players from two Division I university tennis teams performed three days of round-robin tournament play (i.e., two singles tennis matches followed by one doubles match per day) in a hot environment (32.2 ± 1.5   C ° and 53.9 ± 2.4% rh at 1200 hr), so that fluid-electrolyte balance could be evaluated. During singles play, body weight percentage changes were minimal and were similar for males and females (males -1.3 ± 0.8%, females -0.7 ± 0.8%). Estimated daily losses (mmol · day 1 ) of sweat sodium (Na+) and potassium (K+) (males, Na + 158.7, K + 31.3; females, Na + 86.5, K + 18.9) were met by the players' daily dietary intakes (mmol · day 1 ) of these electrolytes (males, Na + 279.1 ± 109.4, K + 173.5 ± 57.7; females, Na + 178.9 ± 68.9, K + 116.1 ± 37.5). Daily plasma volume and electrolyte (Na+, K + ) levels were generally conserved, although, plasma [Na+] was lower (p < .05) on the morning of Day 4. This study indicated that these athletes generally maintained overall fluid-electrolyte balance, in response to playing multiple tennis matches on 3 successive days in a hot environment, without the occurrence of heat illness.

Restricted access

Emily C. Borden, William J. Kraemer, Bryant J. Walrod, Emily M. Post, Lydia K. Caldwell, Matthew K. Beeler, William H. DuPont, John Paul Anders, Emily R. Martini, Jeff S. Volek, and Carl M. Maresh

Purpose: To evaluate the changes in the state of hydration in elite National Collegiate Athletic Association (NCAA) Division I college wrestlers during and after a season. Methods: Ohio State University wrestling team members (N = 6; mean [SD] age = 19.6 [1.1] y; height = 171.6 [2.9] cm; body mass = 69.5 [8.1] kg) gave informed consent to participate in the investigation with measurements (ie, body mass, urine-specific gravity [USG; 2 methods], Visual Analog Scale thirst scale, plasma osmolality) obtained during and after the season. Results: Measurements for USG, regardless of methods, were not significantly different between visits, but plasma osmolality was significantly (P = .001) higher at the beginning of the season—295.5 (4.9) mOsm·kg−1 compared with 279.6 (6.1) mOsm·kg−1 after the season. No changes in thirst ratings were observed, and the 2 measures of USG were highly correlated (r > .9, P = .000) at each time point, but USG and plasma osmolality were not related. Conclusions: A paradox in the clinical interpretation of euhydration in the beginning of the season was observed with the USG, indicating that the wrestlers were properly hydrated, while the plasma osmolality showed they were not. Thus, the tracking of hydration status during the season is a concern when using only NCAA policies and procedures. The wrestlers did return to normal euhydration levels after the season on both biomarkers, which is remarkable, as previous studies have indicated that this may not happen because of the reregulation of the osmol-regulatory center in the brain.

Restricted access

Lindsey E. Eberman, Stephanie M. Mazerolle, Kelly D. Pagnotta, Kristin A. Applegate, Douglas J. Casa, and Carl M. Maresh