Search Results

You are looking at 11 - 12 of 12 items for

  • Author: Daniel J. Plews x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Daniel J. Plews, Paul B. Laursen, Andrew E. Kilding, and Martin Buchheit

The aim of this study was to compare 2 different methodological assessments when analyzing the relationship between performance and heart-rate (HR) -derived indices (resting HR [RHR] and HR variability [HRV]) to evaluate positive adaptation to training. The relative change in estimated maximum aerobic speed (MAS) and 10-km-running performance was correlated to the relative change in RHR and the natural logarithm of the square root of the mean sum of the squared differences between R-R intervals on an isolated day (RHRday; Ln rMSSDday) or when averaged over 1 wk (RHRweek; Ln rMSSDweek) in 10 runners who responded to a 9-wk training intervention. Moderate and small correlations existed between changes in MAS and 10-km-running performance and RHRday (r = .35, 90%CI [–.35, .76] and r = –.21 [–.68, .39]), compared with large and very large correlations for RHRweek (r = –.62 [–.87, –.11] and r = .73 [.30, .91]). While a trivial correlation was observed for MAS vs Ln rMSSDday (r = –.06 [–.59, .51]), a very large correlation existed with Ln rMSSDweek (r = .72 [.28, .91]). Similarly, changes in 10-km-running performance revealed a small correlation with Ln rMSSDday (r = –.17 [–.66, .42]), vs a very large correlation for Ln rMSSDweek (r = –.76 [–.92, –.36]). In conclusion, the averaging of RHR and HRV values over a 1-wk period appears to be a superior method for evaluating positive adaption to training compared with assessing its value on a single isolated day.

Restricted access

Emiel Schulze, Hein A.M. Daanen, Koen Levels, Julia R. Casadio, Daniel J. Plews, Andrew E. Kilding, Rodney Siegel, and Paul B. Laursen

Purpose:

To determine the effect of thermal state and thermal comfort on cycling performance in the heat.

Methods:

Seven well-trained male triathletes completed 3 performance trials consisting of 60 min cycling at a fixed rating of perceived exertion (14) followed immediately by a 20-km time trial in hot (30°C) and humid (80% relative humidity) conditions. In a randomized order, cyclists either drank ambient-temperature (30°C) fluid ad libitum during exercise (CON), drank ice slurry (−1°C) ad libitum during exercise (ICE), or precooled with iced towels and ice slurry ingestion (15g/kg) before drinking ice slurry ad libitum during exercise (PC+ICE). Power output, rectal temperature, and ratings of thermal comfort were measured.

Results:

Overall mean power output was possibly higher in ICE (+1.4% ± 1.8% [90% confidence limit]; 0.4 > smallest worthwhile change [SWC]) and likely higher PC+ICE (+2.5% ± 1.9%; 1.5 > SWC) than in CON; however, no substantial differences were shown between PC+ICE and ICE (unclear). Time-trial performance was likely enhanced in ICE compared with CON (+2.4% ± 2.7%; 1.4 > SWC) and PC+ICE (+2.9% ± 3.2%; 1.9 > SWC). Differences in mean rectal temperature during exercise were unclear between trials. Ratings of thermal comfort were likely and very likely lower during exercise in ICE and PC+ICE, respectively, than in CON.

Conclusions:

While PC+ICE had a stronger effect on mean power output compared with CON than ICE did, the ICE strategy enhanced late-stage time-trial performance the most. Findings suggest that thermal comfort may be as important as thermal state for maximizing performance in the heat.