Search Results

You are looking at 11 - 13 of 13 items for

  • Author: Dylan P. Cliff x
  • Refine by Access: All Content x
Clear All Modify Search
Full access

Sanne L.C. Veldman, Rachel A. Jones, Rebecca M. Stanley, Dylan P. Cliff, Stewart A. Vella, Steven J. Howard, Anne-Maree Parrish, and Anthony D. Okely

Background: The aim of this study was to examine the efficacy of an embedded after-school intervention, on promoting physical activity and academic achievement in primary-school-aged children. Methods: This 6-month, 2-arm cluster randomized controlled trial involved 4 after-school centers. Two centers were randomly assigned to the intervention, which involved training the center staff on and implementing structured physical activity (team sports and physical activity sessions for 75 min) and academic enrichment activities (45 min). The activities were implemented 3 afternoons per week for 2.5 hours. The control centers continued their usual after-school care practice. After-school physical activity (accelerometry) and executive functions (working memory, inhibition, and cognitive flexibility) were assessed pre- and postintervention. Results: A total of 60 children were assessed (7.7 [1.8] y; 50% girls) preintervention and postintervention (77% retention rate). Children in the intervention centers spent significantly more time in moderate to vigorous physical activity (adjusted difference = 2.4%; 95% confidence interval, 0.6 to 4.2; P = .026) and scored higher on cognitive flexibility (adjusted difference = 1.9 units; 95% confidence interval, 0.9 to 3.0; P = .009). About 92% of the intervention sessions were implemented. The participation rates varied between 51% and 94%. Conclusion: This after-school intervention was successful at increasing moderate to vigorous physical activity and enhancing cognitive flexibility in children. As the intervention was implemented by the center staff and local university students, further testing for effectiveness and scalability in a larger trial is required.

Restricted access

Xanne Janssen, Dylan P. Cliff, John J. Reilly, Trina Hinkley, Rachel A. Jones, Marijka Batterham, Ulf Ekelund, Soren Brage, and Anthony D. Okely

This study examined the classification accuracy of the activPAL, including total time spent sedentary and total number of breaks in sedentary behavior (SB) in 4- to 6-year-old children. Forty children aged 4–6 years (5.3 ± 1.0 years) completed a ~150-min laboratory protocol involving sedentary, light, and moderate- to vigorous-intensity activities. Posture was coded as sit/lie, stand, walk, or other using direct observation. Posture was classified using the activPAL software. Classification accuracy was evaluated using sensitivity, specificity and area under the receiver operating characteristic curve (ROC-AUC). Time spent in each posture and total number of breaks in SB were compared using paired sample t-tests. The activPAL showed good classification accuracy for sitting (ROC-AUC = 0.84) and fair classification accuracy for standing and walking (0.76 and 0.73, respectively). Time spent in sit/lie and stand was overestimated by 5.9% (95% CI = 0.6−11.1%) and 14.8% (11.6−17.9%), respectively; walking was underestimated by 10.0% (−12.9−7.0%). Total number of breaks in SB were significantly overestimated (55 ± 27 over the course of the protocol; p < .01). The activPAL performed well when classifying postures in young children. However, the activPAL has difficulty classifying other postures, such as kneeling. In addition, when predicting time spent in different postures and total number of breaks in SB the activPAL appeared not to be accurate.

Open access

Christiana M.T. van Loo, Anthony D. Okely, Marijka Batterham, Tina Hinkley, Ulf Ekelund, Soren Brage, John J. Reilly, Gregory E. Peoples, Rachel Jones, Xanne Janssen, and Dylan P. Cliff

Background:

To validate the activPAL3 algorithm for predicting metabolic equivalents (TAMETs) and classifying MVPA in 5- to 12-year-old children.

Methods:

Fifty-seven children (9.2 ± 2.3y, 49.1% boys) completed 14 activities including sedentary behaviors (SB), light (LPA) and moderate-to-vigorous physical activities (MVPA). Indirect calorimetry (IC) was used as the criterion measure. Analyses included equivalence testing, Bland-Altman procedures and area under the receiver operating curve (ROC-AUC).

Results:

At the group level, TAMETs were significantly equivalent to IC for handheld e-game, writing/coloring, and standing class activity (P < .05). Overall, TAMETs were overestimated for SB (7.9 ± 6.7%) and LPA (1.9 ± 20.2%) and underestimated for MVPA (27.7 ± 26.6%); however, classification accuracy of MVPA was good (ROC-AUC = 0.86). Limits of agreement were wide for all activities, indicating large individual error (SB: −27.6% to 44.7%; LPA: −47.1% to 51.0%; MVPA: −88.8% to 33.9%).

Conclusions:

TAMETs were accurate for some SB and standing, but were overestimated for overall SB and LPA, and underestimated for MVPA. Accuracy for classifying MVPA was, however, acceptable.