Search Results

You are looking at 11 - 15 of 15 items for

  • Author: Glenn S. Fleisig x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Kevin E. Wilk, Naiquan Zheng, Glenn S. Fleisig, James R. Andrews, and William G. Clancy

Closed kinetic chain exercise has become popular in rehabilitation of the ACL patient. While many clinicians agree on the benefits of closed kinetic chain exercise, there is great discrepancy as to which exercises fit this category. This discrepancy stems from the fact that the kinetic chain concept was originally developed using mechanical engineering concepts and not human kinesiology. In this paper, the kinetic chain concept is redefined in a continuum of lower extremity exercises from closed kinetic chain to open kinetic chain. The placement of an exercise in this continuum is based upon joint kinematics, quadriceps and hamstring muscle activity, cruciate ligament stress, and joint weight-bearing load. An understanding of these factors can help the clinician design a comprehensive and effective rehabilitation program for the ACL patient.

Restricted access

Michael M. Reinold, Glenn S. Fleisig, James R. Andrews, Kevin E. Wilk, and Gene G. Jameson

Restricted access

Rafael F. Escamilla, Naiquan Zheng, Toran D. MacLeod, Rodney Imamura, Shangcheng Wang, Kevin E. Wilk, Kyle Yamashiro, and Glenn S. Fleisig

The objective was to assess how patellofemoral loads (joint force and stress) change while lunging with step length and step height variations. Sixteen participants performed a forward lunge using short and long steps at ground level and up to a 10-cm platform. Electromyography, ground reaction force, and 3D motion were captured, and patellofemoral loads were calculated as a function of knee angle. Repeated-measures 2-way analysis of variance (P < .05) was employed. Patellofemoral loads in the lead knee were greater with long step at the beginning of landing (10°–30° knee angle) and the end of pushoff (10°–40°) and greater with short step during the deep knee flexion portion of the lunge (50°–100°). Patellofemoral loads were greater at ground level than 10-cm platform during lunge descent (50°–100°) and lunge ascent (40°–70°). Patellofemoral loads generally increased as knee flexion increased and decreased as knee flexion decreased. To gradually increase patellofemoral loads, perform forward lunge in the following sequence: (1) minimal knee flexion (0°–30°), (2) moderate knee flexion (0°–60°), (3) long step and deep knee flexion (0°–100°) up to a 10-cm platform, and (4) long step and deep knee flexion (0°–100°) at ground level.

Restricted access

Rafael F. Escamilla, Glenn S. Fleisig, Coop DeRenne, Marcus K. Taylor, Claude T. Moorman III, Rodney Imamura, Edward Barakatt, and James R. Andrews

We propose that learning proper hitting kinematics should be encouraged at a young age during youth baseball because this may help reinforce proper hitting kinematics as a player progresses to higher levels of baseball in their adult years. To enhance our understanding between youth and adult baseball hitting, kinematic and temporal analyses of baseball hitting were evaluated with a high-speed motion analysis system between 12 skilled youth and 12 skilled adult baseball players. There were only a small number of temporal differences between youth and adult hitters, with adult hitters taking significantly greater time than youth hitters during the stride phase and during the swing. Compared with youth hitters, adult hitters a) had significantly greater (p < .01) lead knee flexion when the hands started to move forward; b) flexed the lead knee over a greater range of motion during the transition phase (31° versus 13°); c) extended the lead knee over a greater range of motion during the bat acceleration phase (59° versus 32°); d) maintained a more open pelvis position at lead foot off ground; and e) maintained a more open upper torso position when the hands started to move forward and a more closed upper torso position at bat-ball contact. Moreover, adult hitters had greater peak upper torso angular velocity (857°/s versus 717°/s), peak left elbow extension angular velocity (752°/s versus 598°/s), peak left knee extension angular velocity (386°/s versus 303°/s), and bat linear velocity at bat-ball contact (30 m/s versus 25 m/s). The numerous differences in kinematic and temporal parameters between youth and adult hitters suggest that hitting mechanics are different between these two groups.

Restricted access

Rafael F. Escamilla, Glenn S. Fleisig, Coop DeRenne, Marcus K. Taylor, Claude T. Moorman III, Rodney Imamura, Edward Barakatt, and James R. Andrews

A motion system collected 120-Hz data from 14 baseball adult hitters using normal and choke-up bat grips. Six swings were digitized for each hitter, and temporal and kinematic parameters were calculated. Compared with a normal grip, the choke-up grip resulted in 1) less time during stride phase and swing; 2) the upper torso more opened at lead foot contact; 3) the pelvis more closed and less bat linear velocity at bat-ball contact; 4) less range of motion of the upper torso and pelvis during swing; 5) greater elbow flexion at lead foot contact; and 6) greater peak right elbow extension angular velocity. The decreased time during the stride phase when using a choke-up grip implies that hitters quicken their stride when they choke up. Less swing time duration and less upper torso and pelvis rotation range of motion using the choke-up grip supports the belief of many coaches and players that using a choke-up grip results in a “quicker” swing. However, the belief that using a choke-up grip leads to a faster moving bat was not supported by the results of this study.