Search Results

You are looking at 11 - 17 of 17 items for

  • Author: Hiroaki Kanehisa x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Toshimasa Yanai, Akifumi Matsuo, Akira Maeda, Hiroki Nakamoto, Mirai Mizutani, Hiroaki Kanehisa, and Tetsuo Fukunaga

We developed a force measurement system in a soil-filled mound for measuring ground reaction forces (GRFs) acting on baseball pitchers and examined the reliability and validity of kinetic and kinematic parameters determined from the GRFs. Three soil-filled trays of dimensions that satisfied the official baseball rules were fixed onto 3 force platforms. Eight collegiate pitchers wearing baseball shoes with metal cleats were asked to throw 5 fastballs with maximum effort from the mound toward a catcher. The reliability of each parameter was determined for each subject as the coefficient of variation across the 5 pitches. The validity of the measurements was tested by comparing the outcomes either with the true values or the corresponding values computed from a motion capture system. The coefficients of variation in the repeated measurements of the peak forces ranged from 0.00 to 0.17, and were smaller for the pivot foot than the stride foot. The mean absolute errors in the impulses determined over the entire duration of pitching motion were 5.3 N˙s, 1.9 N˙s, and 8.2 N˙s for the X-, Y-, and Z-directions, respectively. These results suggest that the present method is reliable and valid for determining selected kinetic and kinematic parameters for analyzing pitching performance.

Restricted access

Nobuo Takeshima, Keizo Shimada, Mohammod M. Islam, Hiroaki Kanehisa, Yoshie Ishida, and William F. Brechue

To clarify the progression of muscle loss in nursing home residents, frail women (n = 16; age: 85 ± 9 years; residence time: 764 days) were assessed for physical activity, caloric intake, and site-specific muscle thickness (MTH) and subcutaneous fat thickness (SFT) using B-mode ultrasound at nine anatomical sites at four intervals over one year. Height, body weight, and BMI did not change. Physical activity (246 steps/day) and nutritional intake (1,441 kcal, 60.3 g protein/day) were unaltered throughout the study. Subjects experienced a significant, progressive loss of muscle indicated by decrements in anterior upper arm (20%), posterior upper arm (25%), abdomen (20%), subscapular (33%), anterior thigh (15%), posterior thigh (22%), anterior lower leg (11%), posterior lower leg (13%), and forearm (15%) MTH. At study inception, prevalence of sarcopenia was related to muscle loss in the upper leg, while upper body muscle wasting contributed to sarcopenia later and was unrelated to physical activity, nutritional input, or duration of residence.

Restricted access

Norihide Sugisaki, Taku Wakahara, Koichiro Murata, Naokazu Miyamoto, Yasuo Kawakami, Hiroaki Kanehisa, and Tetsuo Fukunaga

Although the moment arm of the triceps brachii muscle has been shown to be associated with the muscle’s anatomical crosssectional area, whether training-induced muscle hypertrophy alters the moment arm of the muscle remains unexplored. Therefore, the current study aimed to examine this. Eleven men underwent a 12-week resistance training program for the triceps brachii muscle. The maximum muscle anatomical cross-sectional area (ACSAmax), the moment arm of the triceps brachii muscle, and the anterior-posterior dimension of the olecranon were measured using a magnetic resonance imaging system before and after intervention. The ACSAmax (33.6 ± 11.9%, P < .001) and moment arm (5.5 ± 4.0%, P = .001) significantly increased after training, whereas the anterior-posterior dimension of the olecranon did not change (P > .05). The change in moment arm was smaller than that expected from the relationship between the ACSAmax and the moment arm before the intervention. The present results indicate that training-induced triceps brachii muscle hypertrophy could increase the muscle moment arm, but its impact can be small or negligible.

Restricted access

Ryota Akagi, Soichiro Iwanuma, Satoru Hashizume, Hiroaki Kanehisa, Toshimasa Yanai, and Yasuo Kawakami

The purpose of this study was to determine in vivo moment arm lengths (MAs) of three elbow flexors at rest and during low- and relatively high-intensity contractions, and to examine the contraction intensity dependence of MAs at different joint positions. At 50°, 80° and 110° of elbow flexion, MAs of the biceps brachii, brachialis and brachioradialis were measured in 10 young men using sagittal images of the right arm obtained by magnetic resonance imaging, at rest and during 20% and 60% of isometric maximal voluntary elbow flexion. In most conditions, MAs increased with isometric contractions, which is presumably due to the contraction-induced thickening of the muscles. This phenomenon was especially evident in the flexed elbow positions. The influence of the contraction intensities on the increases in MAs varied across the muscles. These results suggest that in vivo measurements of each elbow flexor MA during contractions are essential to properly examine the effects on the interrelationships between elbow flexion torque and individual muscle forces.

Restricted access

Tetsuro Muraoka, Tadashi Muramatsu, Daisuke Takeshita, Hiroaki Kanehisa, and Tetsuo Fukunaga

This study estimated the passive ankle joint moment during standing and walking initiation and its contribution to total ankle joint moment during that time. The decrement of passive joint moment due to muscle fascicle shortening upon contraction was taken into account. Muscle fascicle length in the medial gastrocnemius, which was assumed to represent muscle fascicle length in plantarflexors, was measured using ultrasonography during standing, walking initiation, and cyclical slow passive ankle joint motion. Total ankle joint moment during standing and walking initiation was calculated from ground reaction forces and joint kinematics. Passive ankle joint moment during the cyclical ankle joint motion was measured via a dynamometer. Passive ankle joint moment during standing and at the time (Tp) when the MG muscle-tendon complex length was longest in the stance phase during walking initiation were 2.3 and 5.4 Nm, respectively. The muscle fascicle shortened by 2.9 mm during standing compared with the length at rest, which decreased the contribution of passive joint moment from 19.9% to 17.4%. The muscle fascicle shortened by 4.3 mm at Tp compared with the length at rest, which decreased the contribution of passive joint moment from 8.0% to 5.8%. These findings suggest that (a) passive ankle joint moment plays an important role during standing and walking initiation even in view of the decrement of passive joint moment due to muscle fascicle shortening upon muscle contraction, and (b) muscle fascicle shortening upon muscle contraction must be taken into account when estimating passive joint moment during movements.

Restricted access

Kentaro Chino, Naotoshi Mitsukawa, Kai Kobayashi, Yusuke Miyoshi, Toshiaki Oda, Hiroaki Kanehisa, Tetsuo Fukunaga, Senshi Fukashiro, and Yasuo Kawakami

To investigate the relationship between fascicle behavior and joint torque, the fascicle behavior of the triceps surae during isometric and eccentric (30 and 60 deg/s) plantar flexion by maximal voluntary and submaximal electrical activation (MVA and SEA) was measured by real-time ultrasonography. Eccentric torque at 30 and 60 deg/s was significantly higher than isometric torque under SEA, but not under MVA. However, fascicle length did not significantly differ between isometric and eccentric trials under either condition. Therefore, the difference in developed torque by MVA and SEA cannot be explained by fascicle behavior. Under both MVA and SEA conditions, eccentric torque at 30 and 60 deg/s was equivalent. Similarly, fascicle lengthening velocities at 30 and 60deg/s did not show any significant difference. Such fascicle behavior can be attributed to the influence of tendinous tissue and pennation angle, and lead to a lack of increase in eccentric torque with increasing angular velocity.

Restricted access

Keitaro Kubo, Teruaki Komuro, Noriko Ishiguro, Naoya Tsunoda, Yoshiaki Sato, Naokata Ishii, Hiroaki Kanehisa, and and Tetsuo Fukunaga

The present study aimed to investigate the effects of low-load resistance training with vascular occlusion on the specific tension and tendon properties by comparing with those of high-load training. Nine participants completed 12 weeks (3 days/week) of a unilateral isotonic training program on knee extensors. One leg was trained using low load (20% of 1 RM) with vascular occlusion (LLO) and other leg using high load (80% of 1 RM) without vascular occlusion (HL). Before and after training, maximal isometric knee extension torque (MVC) and muscle volume were measured. Specific tension of vastus lateralis muscle (VL) was calculated from MVC, muscle volume, and muscle architecture measurements. Stiffness of tendon-aponeurosis complex in VL was measured using ultrasonography during isometric knee extension. Both protocols significantly increased MVC and muscle volume of quadriceps femoris muscle. Specific tension of VL increased significantly 5.5% for HL, but not for LLO. The LLO protocol did not alter the stiffness of tendon-aponeurosis complex in knee extensors, while the HL protocol increased it significantly. The present study demonstrated that the specific tension and tendon properties were found to remain following low-load resistance training with vascular occlusion, whereas they increased significantly after high-load training.