Search Results

You are looking at 11 - 20 of 22 items for :

  • Author: Michael McGuigan x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Stuart J. Cormack, Mitchell G. Mooney, Will Morgan, and Michael R. McGuigan

Purpose:

To determine the impact of neuromuscular fatigue (NMF) assessed from variables obtained during a countermovement jump on exercise intensity measured with triaxial accelerometers (load per minute [LPM]) and the association between LPM and measures of running activity in elite Australian Football.

Methods:

Seventeen elite Australian Football players performed the Yo-Yo Intermittent Recovery Test level 2 (Yo-Yo IR2) and provided a baseline measure of NMF (flight time:contraction time [FT:CT]) from a countermovement jump before the season. Weekly samples of FT:CT, coaches’ rating of performance (votes), LPM, and percent contribution of the 3 vectors from the accelerometers in addition to high-speed-running meters per minute at >15 km/h and total distance relative to playing time (m/min) from matches were collected. Samples were divided into fatigued and nonfatigued groups based on reductions in FT:CT. Percent contributions of vectors to LPM were assessed to determine the likelihood of a meaningful difference between fatigued and nonfatigued groups. Pearson correlations were calculated to determine relationships between accelerometer vectors and running variables, votes, and Yo-Yo IR2 score.

Results:

Fatigue reduced the contribution of the vertical vector by (mean ± 90% CI) –5.8% ± 6.1% (86% likely) and the number of practically important correlations.

Conclusions:

NMF affects the contribution of individual vectors to total LPM, with a likely tendency toward more running at low speed and less acceleration. Fatigue appears to limit the influence of the aerobic and anaerobic qualities assessed via the Yo-Yo IR2 test on LPM and seems implicated in pacing.

Restricted access

Blake D. McLean, Aaron J. Coutts, Vince Kelly, Michael R. McGuigan, and Stuart J. Cormack

Introduction:

The purpose of this study was to examine the changes in neuromuscular, perceptual and hormonal measures following professional rugby league matches during different length between-match microcycles.

Methods:

Twelve professional rugby league players from the same team were assessed for changes in countermovement jump (CMJ) performance (fight time and relative power), perceptual responses (fatigue, well-being and muscle soreness) and salivary hormone (testosterone [T] and cortisol [C]) levels during 5, 7 and 9 d between-match training microcycles. All training was prescribed by the club coaches and was monitored using the session-RPE method.

Results:

Lower mean daily training load was completed on the 5 d compared with the 7 and 9 d microcycles. CMJ fight time and relative power, perception of fatigue, overall well-being and muscle soreness were signifcantly reduced in the 48 h following the match in each microcycle (P < .05). Most CMJ variables returned to near baseline values following 4 d in each microcycle. Countermovement jump relative power was lower in the 7 d microcycle in comparison with the 9 d microcycle (P < .05). There was increased fatigue at 48 h in the 7 and 9 d microcycles (P < .05) but had returned to baseline in the 5 d microcycle. Salivary T and C did not change in response to the match.

Discussion:

Neuromuscular performance and perception of fatigue are reduced for at least 48 h following a rugby league match but can be recovered to baseline levels within 4 d. These fndings show that with appropriate training, it is possible to recover neuromuscular and perceptual measures within 4 d after a rugby league match.

Restricted access

Michael R. McGuigan, Abdulaziz Al Dayel, David Tod, Carl Foster, Robert U. Newton, and Simone Pettigrew

The purpose of this study was to investigate the use of the OMNI Resistance Exercise scale (OMNI-RES) for monitoring the intensity of different modes of resistance training in children who are overweight or obese. Sixty-one children (mean age = 9.7 ± 1.4 years) performed three resistance training sessions every week for 4 weeks. Each session consisted of three sets of 3–15 repetitions of eight different resistance exercises. OMNI-RES RPE measures (0–10) were obtained following each set and following the end of the exercise session. There was a significant difference between average RPE (1.68 ± 0.61) and Session RPE (3.10 ± 1.18) during the 4 weeks of training (p < .05). There was no significant change in session RPE over the 4 weeks of training. The correlation coefficient between average and session RPE values was significant (r = .88, p < .05). The findings of the current study indicate that the RPE values are higher when OMNI-RES measures are obtained following the whole training session than when obtained following every single set of exercise. This suggests that in children the session RPE provides different information to the average RPE across the entire session.

Restricted access

Kyle R. Barnes, Will G. Hopkins, Michael R. McGuigan, and Andrew E. Kilding

Purpose:

Runners use uphill running as a movement-specific form of resistance training to enhance performance. However, the optimal parameters for prescribing intervals are unknown. The authors adopted a dose-response design to investigate the effects of various uphill interval-training programs on physiological and performance measures.

Methods:

Twenty well-trained runners performed an incremental treadmill test to determine aerobic and biomechanical measures, a series of jumps on a force plate to determine neuromuscular measures, and a 5-km time trial. Runners were then randomly assigned to 1 of 5 uphill interval-training programs. After 6 wk all tests were repeated. To identify the optimal training program for each measure, each runner’s percentage change was modeled as a quadratic function of the rank order of the intensity of training. Uncertainty in the optimal training and in the corresponding effect on the given measure was estimated as 90% confidence limits using bootstrapping.

Results:

There was no clear optimum for time-trial performance, and the mean improvement over all intensities was 2.0% (confidence limits ±0.6%). The highest intensity was clearly optimal for running economy (improvement of 2.4% ± 1.4%) and for all neuromuscular measures, whereas other aerobic measures were optimal near the middle intensity. There were no consistent optima for biomechanical measures.

Conclusions:

These findings support anecdotal reports for incorporating uphill interval training in the training programs of distance runners to improve physiological parameters relevant to running performance. Until more data are obtained, runners can assume that any form of high-intensity uphill interval training will benefit 5-km time-trial performance.

Restricted access

Stuart J. Cormack, Robert U. Newton, Michael R. McGuigan, and Tim L.A. Doyle

Purpose:

To establish the reliability of various measures obtained during single and repeated countermovement jump (CMJ) performance in an elite athlete population.

Methods:

Two studies, each involving 15 elite Australian Rules Football (ARF) players were conducted where subjects performed two days, separated by one week, of AM and PM trials of either a single (CMJ1) or 5 repeated CMJ (CMJ5). Each trial was conducted on a portable force-plate. The intraday, interday, and overall typical error (TE) and coefficient of variation (CV%) were calculated for numerous variables in each jump type.

Results:

A number of CMJ1 and CMJ5 variables displayed high intraday, interday, and overall reliability. In the CMJ1 condition, mean force (CV 1.08%) was the most reliable variable. In the CMJ5, fight time and relative mean force displayed the highest repeatability with CV of 1.88% and 1.57% respectively. CMJ1Mean force was the only variable with an overall TE < smallest worthwhile change (SWC).

Conclusion:

Selected variables obtained during CMJ1 and CMJ5 performance can be used to assess the impact of both acute and chronic training and competition. Variables derived from the CMJ5 may respond differently than their CMJ1 counterparts and should provide insights into differential mechanisms of response and adaptation.

Restricted access

Lachlan P. James, Haresh Suppiah, Michael R. McGuigan, and David L. Carey

Purpose: Dozens of variables can be derived from the countermovement jump (CMJ). However, this does not guarantee an increase in useful information because many of the variables are highly correlated. Furthermore, practitioners should seek to find the simplest solution to performance testing and reporting challenges. The purpose of this investigation was to show how to apply dimensionality reduction to CMJ data with a view to offer practitioners solutions to aid applications in high-performance settings. Methods: The data were collected from 3 cohorts using 3 different devices. Dimensionality reduction was undertaken on the extracted variables by way of principal component analysis and maximum likelihood factor analysis. Results: Over 90% of the variance in each CMJ data set could be explained in 3 or 4 principal components. Similarly, 2 to 3 factors could successfully explain the CMJ. Conclusions: The application of dimensional reduction through principal component analysis and factor analysis allowed for the identification of key variables that strongly contributed to distinct aspects of jump performance. Practitioners and scientists can consider the information derived from these procedures in several ways to streamline the transfer of CMJ test information.

Restricted access

Irineu Loturco, Timothy Suchomel, Chris Bishop, Ronaldo Kobal, Lucas A. Pereira, and Michael McGuigan

Purpose: To compare the associations between optimum power loads and 1-repetition-maximum (1RM) values (assessed in half-squat and jump-squat exercises) and multiple performance measures in elite athletes. Methods: Sixty-one elite athletes (15 Olympians) from 4 different sports (track and field [sprinters and jumpers], rugby sevens, bobsled, and soccer) performed squat and countermovement jumps, half-squat exercise (to assess 1RM), half-squat and jump-squat exercises (to assess bar-power output), and sprint tests (60 m for sprinters and jumpers and 40 m for the other athletes). Pearson product–moment correlation test was used to determine relationships between 1RM and bar-power outputs with vertical jumps and sprint times in both exercises. Results: Overall, both measurements were moderately to near perfectly related to speed performance (r values varying from −.35 to −.69 for correlations between 1RM and sprint times, and from −.36 to −.91 for correlations between bar-power outputs and sprint times; P < .05). However, on average, the magnitude of these correlations was stronger for power-related variables, and only the bar-power outputs were significantly related to vertical jump height. Conclusions: The bar-power outputs were more strongly associated with sprint-speed and power performance than the 1RM measures. Therefore, coaches and researchers can use the bar-power approach for athlete testing and monitoring. Due to the strong correlations presented, it is possible to infer that meaningful variations in bar-power production may also represent substantial changes in actual sport performance.

Restricted access

Irineu Loturco, Lucas A. Pereira, Tomás T. Freitas, Chris Bishop, Fernando Pareja-Blanco, and Michael R. McGuigan

Purpose: To test the relationships between maximum and relative strength (MS and RS), absolute and relative peak force (PF and RPF), and strength deficit (SDef), with sprint and jump performance, and to compare these mechanical variables between elite sprinters and professional rugby union players. Methods: Thirty-five male rugby union players and 30 male sprinters performed vertical jumps, 30-m sprint, and half-squat 1-repetition maximum (1RM), where these force-related parameters were collected. Pearson correlation coefficients were used to test the relationships between the variables. An independent t test and magnitude-based inferences compared the mechanical variables between sprinters and rugby players. Results: Almost certain significant differences were observed for jump and sprint performance between groups (P < .0001). The rugby union players demonstrated a likely significant higher MS (P = .03) but a very likely lower RS (P = .007) than the sprinters. No significant differences were observed for PF between them. The sprinters exhibited an almost certain significant higher RPF than the rugby players (P < .0001). Furthermore, the rugby players demonstrated almost certain to likely significant higher SDef from 40% to 70% 1RM (P < .05) compared with the sprinters. Overall, all strength-derived parameters were significantly related to functional performance. Conclusions: Elite sprinters present higher levels of RS and RPF, lower levels of SDef, and better sprint and jump performance than professional rugby players. Relative strength-derived values (RS and RPF) and SDef are significantly associated with speed–power measures and may be used as effective and practical indicators of athletic performance.

Restricted access

Irineu Loturco, Michael R. McGuigan, Valter P. Reis, Sileno Santos, Javier Yanci, Lucas A. Pereira, and Ciro Winckler

This study aimed to investigate the association between the optimum power load in the bench press (BP), shoulder press (SP), and prone bench pull (PBP) exercises and acceleration (ACC) and speed performances in 11 National Team wheelchair basketball (WB) players with similar levels of disability. All athletes were previously familiarized with the testing procedures that were performed on the same day during the competitive period of the season. First, athletes performed a wheelchair 20-m sprint assessment and, subsequently, a maximum power load test to determine the mean propulsive power (MPP) in the BP, SP, and PBP. A Pearson product–moment correlation was used to examine the relationships between sprint velocity (VEL), ACC, and the MPP in the three exercises. The significance level was set as p < .05. Large to very large significant associations were observed between VEL and ACC and the MPP in the BP, SP, and PBP exercises (r varying from .60 to .77; p < .05). The results reveal that WB players who produce more power in these three exercises are also able to accelerate faster and achieve higher speeds over short distances. Given the key importance of high and successive ACCs during wheelchair game-related maneuvers, it is recommended that coaches frequently assess the optimum power load in BP, SP, and PBP in WB players, even during their regular training sessions.

Restricted access

Peter W. Harrison, Lachlan P. James, David G. Jenkins, Michael R. McGuigan, Robert W. Schuster, and Vincent G. Kelly

Purpose: The aim of this study was to map responses over 32 hours following high-load (HL) and moderate-load (ML) half-squat priming. Methods: Fifteen participants completed control, HL (87% 1RM), and ML (65% 1RM) activities in randomized, counterbalanced order. Countermovement jump (CMJ), squat jump (SJ), saliva testosterone, saliva cortisol, and perceptual measures were assessed before and 5 minutes, 8 hours, 24 hours, and 32 hours after each activity. Results are presented as percentage change from baseline and 95% confidence interval (CI). Cliff delta was used to determine threshold for group changes. Results: SJ height increased by 4.5% (CI = 2.2–6.8, Cliff delta = 0.20) 8 hours following HL. CMJ and SJ improved by 6.1% (CI = 2.1–7.8, Cliff delta = 0.27) and 6.5% (CI = 1.2–11.8, Cliff delta = 0.30), respectively, 32 hours after ML. No clear diurnal changes in CMJ or SJ occurred 8 hours following control; however, increases of 3.9% (CI = 2.9–9.2, Cliff delta = 0.26) and 4.5% (CI = 0.9–8.1, Cliff delta = 0.24), respectively, were observed after 32 hours. Although diurnal changes in saliva hormone concentration occurred (Cliff delta = 0.37–0.92), the influence of priming was unclear. Perceived “physical feeling” was greater 8 hours following HL (Cliff delta = 0.36) and 32 hours after ML and control (Cliff delta = 0.17–0.34). Conclusions: HL priming in the morning may result in small improvements in jump output and psychophysiological state in the afternoon. Similar improvements were observed in the afternoon the day after ML priming.