Search Results

You are looking at 11 - 20 of 21 items for

  • Author: Michael R. McGuigan x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Neuromuscular and Endocrine Responses of Elite Players During an Australian Rules Football Season

Stuart J. Cormack, Robert U. Newton, Michael R. McGuigan, and Prue Cormie

Purpose:

To examine variations in neuromuscular and hormonal status and their relationship to performance throughout a season of elite Australian Rules Football (ARF).

Methods:

Fifteen elite ARF players performed a single jump (CMJ1) and 5 repeated countermovement jumps (CMJ5), and provided saliva samples for the analysis of cortisol (C) and testosterone (T) before the season commenced (Pre) and during the 22-match season. Magnitudes of effects were reported with the effect size (ES) statistic. Correlations were performed to analyze relationships between assessment variables and match time, training load, and performance.

Results:

CMJ1Flight time:Contraction time was substantially reduced on 60% of measurement occasions. Magnitudes of change compared with Pre ranged from 1.0 ± 7.4% (ES 0.04 ± 0.29) to −17.1 ± 21.8% (ES −0.77 ± 0.81). Cortisol was substantially lower (up to −40 ± 14.1%, ES of −2.17 ± 0.56) than Pre in all but one comparison. Testosterone response was varied, whereas T:C increased substantially on 70% of occasions, with increases to 92.7 ± 27.8% (ES 2.03 ± 0.76). CMJ1Flight time:Contraction time (r = .24 ± 0.13) and C displayed (r = −0.16 ± 0.1) small correlations with performance.

Conclusion:

The response of CMJ1Flight time:Contraction time suggests periods of neuromuscular fatigue. Change in T:C indicates subjects were unlikely to have been in a catabolic state during the season. Increase in C compared with Pre had a small negative correlation with performance. Both CMJ1Flight time:Contraction time and C may be useful variables for monitoring responses to training and competition in elite ARF athletes.

Restricted access

Neuromuscular, Endocrine, and Perceptual Fatigue Responses During Different Length Between-Match Microcycles in Professional Rugby League Players

Blake D. McLean, Aaron J. Coutts, Vince Kelly, Michael R. McGuigan, and Stuart J. Cormack

Introduction:

The purpose of this study was to examine the changes in neuromuscular, perceptual and hormonal measures following professional rugby league matches during different length between-match microcycles.

Methods:

Twelve professional rugby league players from the same team were assessed for changes in countermovement jump (CMJ) performance (fight time and relative power), perceptual responses (fatigue, well-being and muscle soreness) and salivary hormone (testosterone [T] and cortisol [C]) levels during 5, 7 and 9 d between-match training microcycles. All training was prescribed by the club coaches and was monitored using the session-RPE method.

Results:

Lower mean daily training load was completed on the 5 d compared with the 7 and 9 d microcycles. CMJ fight time and relative power, perception of fatigue, overall well-being and muscle soreness were signifcantly reduced in the 48 h following the match in each microcycle (P < .05). Most CMJ variables returned to near baseline values following 4 d in each microcycle. Countermovement jump relative power was lower in the 7 d microcycle in comparison with the 9 d microcycle (P < .05). There was increased fatigue at 48 h in the 7 and 9 d microcycles (P < .05) but had returned to baseline in the 5 d microcycle. Salivary T and C did not change in response to the match.

Discussion:

Neuromuscular performance and perception of fatigue are reduced for at least 48 h following a rugby league match but can be recovered to baseline levels within 4 d. These fndings show that with appropriate training, it is possible to recover neuromuscular and perceptual measures within 4 d after a rugby league match.

Restricted access

Reliability of Measures Obtained During Single and Repeated Countermovement Jumps

Stuart J. Cormack, Robert U. Newton, Michael R. McGuigan, and Tim L.A. Doyle

Purpose:

To establish the reliability of various measures obtained during single and repeated countermovement jump (CMJ) performance in an elite athlete population.

Methods:

Two studies, each involving 15 elite Australian Rules Football (ARF) players were conducted where subjects performed two days, separated by one week, of AM and PM trials of either a single (CMJ1) or 5 repeated CMJ (CMJ5). Each trial was conducted on a portable force-plate. The intraday, interday, and overall typical error (TE) and coefficient of variation (CV%) were calculated for numerous variables in each jump type.

Results:

A number of CMJ1 and CMJ5 variables displayed high intraday, interday, and overall reliability. In the CMJ1 condition, mean force (CV 1.08%) was the most reliable variable. In the CMJ5, fight time and relative mean force displayed the highest repeatability with CV of 1.88% and 1.57% respectively. CMJ1Mean force was the only variable with an overall TE < smallest worthwhile change (SWC).

Conclusion:

Selected variables obtained during CMJ1 and CMJ5 performance can be used to assess the impact of both acute and chronic training and competition. Variables derived from the CMJ5 may respond differently than their CMJ1 counterparts and should provide insights into differential mechanisms of response and adaptation.

Restricted access

Determining the Optimum Bar Velocity in the Barbell Hip Thrust Exercise

Irineu Loturco, Timothy Suchomel, Chris Bishop, Ronaldo Kobal, Lucas A. Pereira, and Michael R. McGuigan

Purpose: To identify the bar velocities that optimize power output in the barbell hip thrust exercise. Methods: A total of 40 athletes from 2 sports disciplines (30 track-and-field sprinters and jumpers and 10 rugby union players) participated in this study. Maximum bar-power outputs and their respective bar velocities were assessed in the barbell hip thrust exercise. Athletes were divided, using a median split analysis, into 2 groups according to their bar-power outputs in the barbell hip thrust exercise (“higher” and “lower” power groups). The magnitude-based inferences method was used to analyze the differences between groups in the power and velocity outcomes. To assess the precision of the bar velocities for determining the maximum power values, the coefficient of variation (CV%) was also calculated. Results: Athletes achieved the maximum power outputs at a mean velocity, mean propulsive velocity, and peak velocity of 0.92 (0.04) m·s−1 (CV: 4.1%), 1.02 (0.05) m·s−1 (CV: 4.4%), and 1.72 (0.14) m·s−1 (CV: 8.4%), respectively. No meaningful differences were observed in the optimum bar velocities between higher and lower power groups. Conclusions: Independent of the athletes’ power output and bar-velocity variable, the optimum power loads frequently occur at very close bar velocities.

Restricted access

Maximum Strength, Relative Strength, and Strength Deficit: Relationships With Performance and Differences Between Elite Sprinters and Professional Rugby Union Players

Irineu Loturco, Lucas A. Pereira, Tomás T. Freitas, Chris Bishop, Fernando Pareja-Blanco, and Michael R. McGuigan

Purpose: To test the relationships between maximum and relative strength (MS and RS), absolute and relative peak force (PF and RPF), and strength deficit (SDef), with sprint and jump performance, and to compare these mechanical variables between elite sprinters and professional rugby union players. Methods: Thirty-five male rugby union players and 30 male sprinters performed vertical jumps, 30-m sprint, and half-squat 1-repetition maximum (1RM), where these force-related parameters were collected. Pearson correlation coefficients were used to test the relationships between the variables. An independent t test and magnitude-based inferences compared the mechanical variables between sprinters and rugby players. Results: Almost certain significant differences were observed for jump and sprint performance between groups (P < .0001). The rugby union players demonstrated a likely significant higher MS (P = .03) but a very likely lower RS (P = .007) than the sprinters. No significant differences were observed for PF between them. The sprinters exhibited an almost certain significant higher RPF than the rugby players (P < .0001). Furthermore, the rugby players demonstrated almost certain to likely significant higher SDef from 40% to 70% 1RM (P < .05) compared with the sprinters. Overall, all strength-derived parameters were significantly related to functional performance. Conclusions: Elite sprinters present higher levels of RS and RPF, lower levels of SDef, and better sprint and jump performance than professional rugby players. Relative strength-derived values (RS and RPF) and SDef are significantly associated with speed–power measures and may be used as effective and practical indicators of athletic performance.

Open access

The Optimum Power Load: A Simple and Powerful Tool for Testing and Training

Irineu Loturco, Antonio Dello Iacono, Fábio Y. Nakamura, Tomás T. Freitas, Daniel Boullosa, Pedro L. Valenzuela, Lucas A. Pereira, and Michael R. McGuigan

Purpose: The optimal power load is defined as the load that maximizes power output in a given exercise. This load can be determined through the use of various instruments, under different testing protocols. Specifically, the “optimum power load” (OPL) is derived from the load–velocity relationship, using only bar force and bar velocity in the power computation. The OPL is easily assessed using a simple incremental testing protocol, based on relative percentages of body mass. To date, several studies have examined the associations between the OPL and different sport-specific measures, as well as its acute and chronic effects on athletic performance. The aim of this brief review is to present and summarize the current evidence regarding the OPL, highlighting the main lines of research on this topic and discussing the potential applications of this novel approach for testing and training. Conclusions: The validity and simplicity of OPL-based schemes provide strong support for their use as an alternative to more traditional strength–power training strategies. The OPL method can be effectively used by coaches and sport scientists in different sports and populations, with different purposes and configurations.

Restricted access

Effects of Two Contrast Training Programs on Jump Performance in Rugby Union Players During a Competition Phase

Christos K. Argus, Nicholas D. Gill, Justin W.L. Keogh, Michael R. McGuigan, and Will G. Hopkins

Purpose:

There is little literature comparing contrast training programs typically performed by team-sport athletes within a competitive phase. We compared the effects of two contrast training programs on a range of measures in high-level rugby union players during the competition season.

Methods:

The programs consisted of a higher volume-load (strength-power) or lower volume-load (speed-power) resistance training; each included a tapering of loading (higher force early in the week, higher velocity later in the week) and was performed twice a week for 4 wk. Eighteen players were assessed for peak power during a bodyweight countermovement jump (BWCMJ), bodyweight squat jump (BWSJ), 50 kg countermovement jump (50CMJ), 50 kg squat jump (50SJ), broad jump (BJ), and reactive strength index (RSI; jump height divided by contact time during a depth jump). Players were then randomized to either training group and were reassessed following the intervention. Inferences were based on uncertainty in outcomes relative to thresholds for standardized changes.

Results:

There were small between-group differences in favor of strength-power training for mean changes in the 50CMJ (8%; 90% confidence limits, ±8%), 50SJ (8%; ±10%), and BJ (2%; ±3%). Differences between groups for BWCMJ, BWSJ, and reactive strength index were unclear. For most measures there were smaller individual differences in changes with strength-power training.

Conclusion:

Our findings suggest that high-level rugby union athletes should be exposed to higher volume-load contrast training which includes one heavy lifting session each week for larger and more uniform adaptation to occur in explosive power throughout a competitive phase of the season.

Restricted access

Relationship Between Power Output and Speed-Related Performance in Brazilian Wheelchair Basketball Players

Irineu Loturco, Michael R. McGuigan, Valter P. Reis, Sileno Santos, Javier Yanci, Lucas A. Pereira, and Ciro Winckler

This study aimed to investigate the association between the optimum power load in the bench press (BP), shoulder press (SP), and prone bench pull (PBP) exercises and acceleration (ACC) and speed performances in 11 National Team wheelchair basketball (WB) players with similar levels of disability. All athletes were previously familiarized with the testing procedures that were performed on the same day during the competitive period of the season. First, athletes performed a wheelchair 20-m sprint assessment and, subsequently, a maximum power load test to determine the mean propulsive power (MPP) in the BP, SP, and PBP. A Pearson product–moment correlation was used to examine the relationships between sprint velocity (VEL), ACC, and the MPP in the three exercises. The significance level was set as p < .05. Large to very large significant associations were observed between VEL and ACC and the MPP in the BP, SP, and PBP exercises (r varying from .60 to .77; p < .05). The results reveal that WB players who produce more power in these three exercises are also able to accelerate faster and achieve higher speeds over short distances. Given the key importance of high and successive ACCs during wheelchair game-related maneuvers, it is recommended that coaches frequently assess the optimum power load in BP, SP, and PBP in WB players, even during their regular training sessions.

Restricted access

Time Course of Neuromuscular, Hormonal, and Perceptual Responses Following Moderate- and High-Load Resistance Priming Exercise

Peter W. Harrison, Lachlan P. James, David G. Jenkins, Michael R. McGuigan, Robert W. Schuster, and Vincent G. Kelly

Purpose: The aim of this study was to map responses over 32 hours following high-load (HL) and moderate-load (ML) half-squat priming. Methods: Fifteen participants completed control, HL (87% 1RM), and ML (65% 1RM) activities in randomized, counterbalanced order. Countermovement jump (CMJ), squat jump (SJ), saliva testosterone, saliva cortisol, and perceptual measures were assessed before and 5 minutes, 8 hours, 24 hours, and 32 hours after each activity. Results are presented as percentage change from baseline and 95% confidence interval (CI). Cliff delta was used to determine threshold for group changes. Results: SJ height increased by 4.5% (CI = 2.2–6.8, Cliff delta = 0.20) 8 hours following HL. CMJ and SJ improved by 6.1% (CI = 2.1–7.8, Cliff delta = 0.27) and 6.5% (CI = 1.2–11.8, Cliff delta = 0.30), respectively, 32 hours after ML. No clear diurnal changes in CMJ or SJ occurred 8 hours following control; however, increases of 3.9% (CI = 2.9–9.2, Cliff delta = 0.26) and 4.5% (CI = 0.9–8.1, Cliff delta = 0.24), respectively, were observed after 32 hours. Although diurnal changes in saliva hormone concentration occurred (Cliff delta = 0.37–0.92), the influence of priming was unclear. Perceived “physical feeling” was greater 8 hours following HL (Cliff delta = 0.36) and 32 hours after ML and control (Cliff delta = 0.17–0.34). Conclusions: HL priming in the morning may result in small improvements in jump output and psychophysiological state in the afternoon. Similar improvements were observed in the afternoon the day after ML priming.

Restricted access

Kinetic Analysis, Potentiation, and Fatigue During Vertical and Horizontal Plyometric Training: An In-Depth Investigation Into Session Volume

Casey M. Watkins, Nicholas D. Gill, Michael R. McGuigan, Ed Maunder, Alyssa-Joy Spence, Paul Downes, Jono Neville, and Adam G. Storey

Despite previous support for plyometric training, optimal dosing strategies remain unclear. Purpose: To investigate vertical and horizontal jump kinetic performance following a low-volume plyometric stimulus with progressively increased session jump volume. Methods: Sixteen academy rugby players (20.0 [2.0] y; 103.0 [17.6] kg; 184.3 [5.5] cm) volunteered for this study. Vertical and horizontal jump sessions were conducted 1 week apart and consisted of a 40-jump low-volume plyometric stimulus using 4 exercises, after which volume was progressively increased to 200 jumps, using countermovement jump (CMJ) for vertical sessions and horizontal broad jump (HBJ) for horizontal sessions. Jump performance was assessed via force-plate analysis at baseline (PRE-0), following the low-volume plyometric stimulus (P-40), and every subsequent 10 jumps until the end of the session (P-50, P-60, P-70, ... P-200). Results: The low-volume stimulus was effective in potentiating HBJ (2% to 5%) but not CMJ (0% to −7%) performance (P < .001). The HBJ performance enhancements were maintained throughout the entire high-volume session, while CMJ realized small but significant decrements (−5% to −7%) in jump height P-50 to P-80 before recovering to presession values. Moreover, increases in eccentric impulse (5% to 24%; P < .001) in both sessions were associated with decreased or maintained concentric impulse, indicating a breakdown in performance-augmenting mechanisms and less effective power transfer concentrically after moderate volumes. Conclusion: Practitioners should consider kinetic differences between HBJ and CMJ with increasing volume to better inform and understand session dosing strategies.