Objectives: To examine the difference between absolute and relative workloads, injury likelihood, and the acute:chronic workload ratio (ACWR) in elite Australian football. Design: Single-cohort, observational study. Methods: Forty-five elite Australian football players from 1 club participated. Running workloads of players were tracked using Global Positioning System technology and were categorized using either (1) absolute, predefined speed thresholds or (2) relative, individualized speed thresholds. Players were divided into 3 equal groups based on maximum velocity: (1) faster, (2) moderate, or (3) slower. One- and 4-wk workloads were calculated, along with the ACWR. Injuries were recorded if they were noncontact in nature and resulted in “time loss.” Results: Faster players demonstrated a significant overestimation of very high-speed running (HSR) when compared with their relative thresholds (P = .01; effect size = −0.73). Similarly, slower players demonstrated an underestimation of high-(P = .06; effect size = 0.55) and very-high-speed (P = .01; effect size = 1.16) running when compared with their relative thresholds. For slower players, (1) greater amounts of relative very HSR had a greater risk of injury than less (relative risk [RR] = 8.30; P = .04) and (2) greater absolute high-speed chronic workloads demonstrated an increase in injury likelihood (RR = 2.28; P = .16), whereas greater relative high-speed chronic workloads offered a decrease in injury likelihood (RR = 0.33; P = .11). Faster players with a very-high-speed ACWR of >2.0 had a greater risk of injury than those between 0.49 and 0.99 for both absolute (RR = 10.31; P = .09) and relative (RR = 4.28; P = .13) workloads. Conclusions: The individualization of velocity thresholds significantly alters the amount of very HSR performed and should be considered in the prescription of training load.
Search Results
You are looking at 11 - 20 of 39 items for
- Author: Tim J. Gabbett x
- Refine by Access: All Content x
Nick B. Murray, Tim J. Gabbett, and Andrew D. Townshend
Nick B. Murray, Tim J. Gabbett, and Andrew D. Townshend
Objectives:
To investigate the relationship between the proportion of preseason training sessions completed and load and injury during the ensuing Australian Football League season.
Design:
Single-cohort, observational study.
Methods:
Forty-six elite male Australian football players from 1 club participated. Players were divided into 3 equal groups based on the amount of preseason training completed (high [HTL], >85% sessions completed; medium [MTL], 50–85% sessions completed; and low [LTL], <50% sessions completed). Global positioning system (GPS) technology was used to record training and game loads, with all injuries recorded and classified by club medical staff. Differences between groups were analyzed using a 2-way (group × training/competition phase) repeated-measures ANOVA, along with magnitude-based inferences. Injury incidence was expressed as injuries per 1000 h.
Results:
The HTL and MTL groups completed a greater proportion of in-season training sessions (81.1% and 74.2%) and matches (76.7% and 76.1%) than the LTL (56.9% and 52.7%) group. Total distance and player load were significantly greater during the first half of the in-season period for the HTL (P = .03, ES = 0.88) and MTL (P = .02, ES = 0.93) groups than the LTL group. The relative risk of injury for the LTL group (26.8/1000 h) was 1.9 times greater than that for the HTL group (14.2/1000 h) (χ2 = 3.48, df = 2, P = .17).
Conclusions:
Completing a greater proportion of preseason training resulted in higher training loads and greater participation in training and competition during the competitive phase of the season.
Rich D. Johnston, Tim J. Gabbett, and David G. Jenkins
Purpose:
To determine the influence the number of contact efforts during a single bout has on running intensity during game-based activities and assess relationships between physical qualities and distances covered in each game.
Methods:
Eighteen semiprofessional rugby league players (age 23.6 ± 2.8 y) competed in 3 off-side small-sided games (2 × 10-min halves) with a contact bout performed every 2 min. The rules of each game were identical except for the number of contact efforts performed in each bout. Players performed 1, 2, or 3 × 5-s wrestles in the single-, double-, and triple-contact game, respectively. The movement demands (including distance covered and intensity of exercise) in each game were monitored using global positioning system units. Bench-press and back-squat 1-repetition maximum and the 30−15 Intermittent Fitness Test (30−15IFT) assessed muscle strength and high-intensity-running ability, respectively.
Results:
There was little change in distance covered during the single-contact game (ES = −0.16 to −0.61), whereas there were larger reductions in the double- (ES = −0.52 to −0.81) and triple-contact (ES = −0.50 to −1.15) games. Significant relationships (P < .05) were observed between 30–15IFT and high-speed running during the single- (r = .72) and double- (r = .75), but not triple-contact (r = .20) game.
Conclusions:
There is little change in running intensity when only single contacts are performed each bout; however, when multiple contacts are performed, greater reductions in running intensity result. In addition, high-intensity-running ability is only associated with running performance when contact demands are low.
Billy T. Hulin, Tim J. Gabbett, Simon Kearney, and Alex Corvo
Purpose:
To quantify activity profiles in approximately 5-min periods to determine if the intensity of rugby league match play changes after the most intense period of play and to determine if the intensity of activity during predefined periods of match play differ between successful and less-successful teams playing at an elite standard.
Methods:
Movement was recorded using a MinimaxX global positioning system (GPS) unit sampling at 10 Hz during 25 rugby league matches, equating to 200 GPS files. Data for each half of match play were separated into 8 equal periods. These periods represented the most intense phase of match play (peak period), the period after the most intense phase of match play (subsequent period), and the average demands of all other periods in a match (mean period). Two rugby league teams were split into a high-success and a low-success group based on their success rates throughout their season.
Results:
Compared with their less-successful counterparts, adjustables and hit-up forwards from the high-success team covered less total distance (P < .01) and less high-intensity-running distance (P < .01) and were involved in a greater number of collisions (P < .01) during the mean period of match play.
Conclusions:
Although a greater number of collisions during match play is linked with a greater rate of success, greater amounts of high-intensity running and total distance are not related to competitive success in elite rugby league. These results suggest that technical and tactical differences, rather than activity profiles, may be the distinguishing factor between successful and less-successful rugby league teams.
Rich D. Johnston, Tim J. Gabbett, and David G. Jenkins
Purpose:
To assess the influence of playing standard and physical fitness on pacing strategies during a junior team-sport tournament.
Methods:
A between-groups, repeated-measures design was used. Twenty-eight junior team-sport players (age 16.6 ± 0.5 y, body mass 79.9 ± 12.0 kg) from a high-standard and low-standard team participated in a junior rugby league tournament, competing in 5 games over 4 d (4 × 40-min and 1 × 50-min game). Players wore global positioning system (GPS) microtechnology during each game to provide information on match activity profiles. The Yo-Yo Intermittent Recovery Test (level 1) was used to assess physical fitness before the competition.
Results:
High-standard players had an initially higher pacing strategy than the low-standard players, covering greater distances at high (ES = 1.32) and moderate speed (ES = 1.41) in game 1 and moderate speed (ES = 1.55) in game 2. However, low-standard players increased their playing intensity across the competition (ES = 0.57–2.04). High-standard/high-fitness players maintained a similar playing intensity, whereas high-standard/low-fitness players reduced their playing intensities across the competition.
Conclusions:
Well-developed physical fitness allows for a higher-intensity pacing strategy that can be maintained throughout a tournament. High-standard/low-fitness players reduce playing intensity, most likely due to increased levels of fatigue as the competition progresses. Low-standard players adopt a pacing strategy that allows them to conserve energy to produce an “end spurt” in the latter games. Maximizing endurance fitness across an entire playing group will maximize playing intensity and minimize performance reductions during the latter stages of a tournament.
Michael J.A. Speranza, Tim J. Gabbett, David A. Greene, Rich D. Johnston, and Andrew D. Townshend
This study investigated the relationship between 2 different assessments of tackling ability, physical qualities, and match-play performance in semiprofessional rugby league players. A total of 18 semiprofessional rugby league players (mean [SD]: age = 23.1 [2.0] y and body mass = 98.8 [11.8] kg) underwent tests of upper- and lower-body strength and power. Tackling ability was assessed using video analysis of under- and over-the-ball tackle drills. A total of 2360 tackles were analyzed from match play. Over-the-ball tackle ability was positively related to the proportion of dominant tackles (Spearman rank-order correlation coefficients [r s] = .52; 95% confidence interval [CI] .07–.79, P = .03) and average play-the-ball speeds (r s = .50; 95% CI .04–.78, P = .03) and negatively related to tackles that conceded offloads (r s = −.55; 95% CI −.78 to .04, P = .04). Under-the-ball tackle ability was significantly related to the proportion of dominant tackles (r s = .57; 95% CI .14–.82, P = .01) and missed tackles (r s = −.48; 95% CI −.77 to .02, P = .05). Good over-the-ball tacklers performed proportionally more dominant tackles, allowed significantly fewer offloads, and had longer average play-the-ball speeds. Good under-the-ball tacklers missed proportionately fewer tackles. This study suggests that both the under-the-ball and over-the-ball standardized tackle assessments are associated with varying indicators of match-play tackle performance and justifies the practical utility of these tests to assess and develop both types of tackles.
Rich D. Johnston, Tim J. Gabbett, Anthony J. Seibold, and David G. Jenkins
Purpose:
Repeated sprinting incorporating tackles leads to greater reductions in sprint performance than repeated sprinting alone. However, the influence of physical contact on the running demands of game-based activities is unknown. The aim of this study was to determine whether the addition of physical contact altered pacing strategies during game-based activities.
Methods:
Twenty-three elite youth rugby league players were divided into 2 groups. Group 1 played the contact game on day 1 while group 2 played the noncontact game; 72 h later they played the alternate game. Each game consisted of offside touch on a 30 × 70-m field, played over two 8-min halves. Rules were identical between games except the contact game included a 10-s wrestle bout every 50 s. Microtechnology devices were used to analyze player movements.
Results:
There were greater average reductions during the contact game for distance (25%, 38 m/min, vs 10%, 20 m/min; effect size [ES] = 1.78 ± 1.02) and low-speed distance (21%, 24 m/min, vs 0%, 2 m/s; ES = 1.38 ± 1.02) compared with the noncontact game. There were similar reductions in high-speed running (41%, 18 m/min, vs 45%, 15 m/min; ES = 0.15 ± 0.95).
Conclusions:
The addition of contact to game-based activities causes players to reduce low-speed activity in an attempt to maintain high-intensity activities. Despite this, players were unable to maintain high-speed running while performing contact efforts. Improving a player’s ability to perform contact efforts while maintaining running performance should be a focus in rugby league training.
Billy T. Hulin, Tim J. Gabbett, Nathan J. Pickworth, Rich D. Johnston, and David G. Jenkins
Purpose: To examine relationships among physical performance, workload, and injury risk in professional rugby league players. Methods: Maximal-effort (n = 112) and submaximal (n = 1084) running performances of 45 players were recorded from 1 club over 2 consecutive seasons. Poorer and better submaximal running performance was determined by higher and lower exercise heart rates, respectively. Exponentially weighted moving averages and daily rolling averages were used to assess microtechnology-derived acute and chronic field-based workloads. The associations among within-individual submaximal running performance, workload, and noncontact lower-limb injury were then investigated. Results: The injury risk associated with poorer submaximal performance was “likely” greater than stable (relative risk = 1.8; 90% confidence interval, 0.9–3.7) and better submaximal performance (relative risk = 2.0; 90% confidence interval, 0.9–4.4). Compared with greater submaximal performance, poorer performance was associated with lower chronic workloads (effect size [d] = 0.82 [0.13], large) and higher acute:chronic workload ratios (d = 0.49 [0.14], small). Chronic workload demonstrated a “nearly perfect” positive relationship with maximal-effort running performance (exponentially weighted moving average, R 2 = .91 [.15]; rolling average, R 2 = .91 [.14]). At acute:chronic workload ratios >1.9, no differences in injury risk were found between rolling average and exponentially weighted moving average methods (relative risk = 1.1; 90% confidence interval, 0.3–3.8; unclear). Conclusions: Reductions in submaximal running performance are related with low chronic workloads, high acute:chronic workload ratios, and increased injury risk. These findings demonstrate that a submaximal running assessment can be used to provide information on physical performance and injury risk in professional rugby league players.
Dean J. McNamara, Tim J. Gabbett, Paul Chapman, Geraldine Naughton, and Patrick Farhart
Purpose:
Bowling workload is linked to injury risk in cricket fast bowlers. This study investigated the validity of microtechnology in the automated detection of bowling counts and events, including run-up distance and velocity, in cricket fast bowlers.
Method:
Twelve highly skilled fast bowlers (mean ± SD age 23.5 ± 3.7 y) performed a series of bowling, throwing, and fielding activities in an outdoor environment during training and competition while wearing a microtechnology unit (MinimaxX). Sensitivity and specificity of a bowling-detection algorithm were determined by comparing the outputs from the device with manually recorded bowling counts. Run-up distance and run-up velocity were measured and compared with microtechnology outputs.
Results:
No significant differences were observed between direct measures of bowling and nonbowling events and true positive and true negative events recorded by the MinimaxX unit (P = .34, r = .99). The bowling-detection algorithm was shown to be sensitive in both training (99.0%) and competition (99.5%). Specificity was 98.1% during training and 74.0% during competition. Run-up distance was accurately recorded by the unit, with a percentage bias of 0.8% (r = .90). The final 10-m (–8.9%, r = .88) and 5-m (–7.3%, r = .90) run-up velocities were less accurate.
Conclusions:
The bowling-detection algorithm from the MinimaxX device is sensitive to detect bowling counts in both cricket training and competition. Although specificity is high during training, the number of false positive events increased during competition. Additional bowling workload measures require further development.
Michael J.A. Speranza, Tim J. Gabbett, Rich D. Johnston, and Jeremy M. Sheppard
Purpose:
This study examined the relationships between tackling ability, playing position, muscle strength and power qualities, and match-play tackling performance in semiprofessional rugby league players.
Methods:
Sixteen semiprofessional rugby league players (mean ± SD age 23.8 ± 1.9 y) underwent tests for muscle strength and power. Tackling ability of the players was tested using video analysis of a standardized 1-on-1 tackling drill. After controlling for playing position, players were divided into “good tackler” or “poor tackler” groups based on the median split of the results of the 1-on-1 tackling drill. A total of 4547 tackles were analyzed from video recordings of 23 matches played throughout the season.
Results:
Maximal squat was significantly associated with tackling ability (r S = .71, P < .05) and with the proportion of dominant tackles (r S = .63, P < .01). Forwards performed more tackles (P = .013, ES = 1.49), with a lower proportion of missed tackles (P = .03, ES = 1.38) than backs. Good tacklers were involved in a larger proportion of dominant tackles and smaller proportion of missed tackles than poor tacklers.
Conclusions:
These findings demonstrate that lower-body strength contributes to more effective tackling performance during both a standardized tackling assessment and match play. Furthermore, players with good tackling ability in a proficiency test were involved in a higher proportion of dominant tackles and missed a smaller proportion of tackles during match play. These results provide further evidence of the practical utility of an off-field tackling assessment in supplying information predictive of tackling performance in competition.