Search Results

You are looking at 21 - 30 of 34 items for

  • Author: Alejandro Lucia x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

David Barranco-Gil, Lidia B. Alejo, Pedro L. Valenzuela, Jaime Gil-Cabrera, Almudena Montalvo-Pérez, Eduardo Talavera, Susana Moral-González, Vicente J. Clemente-Suárez, and Alejandro Lucia

Purpose: To analyze the effects of different warm-up protocols on endurance-cycling performance from an integrative perspective (by assessing perceptual, neuromuscular, physiological, and metabolic variables). Methods: Following a randomized crossover design, 15 male cyclists (35 [9] y; peak oxygen uptake [VO2peak] 66.4 [6.8] mL·kg−1·min−1) performed a 20-minute cycling time trial (TT) preceded by no warm-up, a standard warm-up (10 min at 60% of VO2peak), or a warm-up that was intended to induce potentiation postactivation (PAP warm-up; 5 min at 60% of VO2peak followed by three 10-s all-out sprints). Study outcomes were jumping ability and heart-rate variability (both assessed at baseline and before the TT), TT performance (mean power output), and perceptual (rating of perceived exertion) and physiological (oxygen uptake, muscle oxygenation, heart-rate variability, blood lactate, and thigh skin temperature) responses during and after the TT. Results: Both standard and PAP warm-up (9.7% [4.7%] and 12.9% [6.5%], respectively, P < .001), but not no warm-up (−0.9% [4.8%], P = .074), increased jumping ability and decreased heart-rate variability (−7.9% [14.2%], P = .027; −20.3% [24.7%], P = .006; and −1.7% [10.5%], P = .366). Participants started the TT (minutes 0–3) at a higher power output and oxygen uptake after PAP warm-up compared with the other 2 protocols (P < .05), but no between-conditions differences were found overall for the remainder of outcomes (P > .05). Conclusions: Compared with no warm-up, warming up enhanced jumping performance and sympathetic modulation before the TT, and the inclusion of brief sprints resulted in a higher initial power output during the TT. However, no warm-up benefits were found for overall TT performance or for perceptual or physiological responses during the TT.

Restricted access

Manuel Mateo-March, Pedro L. Valenzuela, Xabier Muriel, Alexis Gandia-Soriano, Mikel Zabala, Alejandro Lucia, Jesús G. Pallares, and David Barranco-Gil

Purpose: The present study aimed to determine the influence of fatigue on the record power profile of professional male cyclists. We also assessed whether fatigue could differently affect cyclists of 2 competition categories. Methods: We analyzed the record power profile in 112 professional cyclists (n = 46 and n = 66 in the ProTeam [PT] and WorldTour [WT] category, respectively; age 29 [6] y, 8 [5] y experience in the professional category) during 2013–2021 (8 [5] seasons/cyclist). We analyzed their mean maximal power (MMP) values for efforts lasting 10 seconds to 120 minutes with no fatigue (after 0 kJ·kg−1) and with increasing levels of fatigue (after 15, 25, 35, and 45 kJ·kg−1). Results: A significant (P < .001) and progressive deterioration of all MMP values was observed from the lowest levels of fatigue assessed (ie, −1.6% to −3.0% decline after 15 kJ·kg−1, and −6.0% to −9.7% after 45 kJ·kg−1). Compared with WT, PT cyclists showed a greater decay of MMP values under fatigue conditions (P < .001), and these differences increased with accumulating levels of fatigue (decay of −1.8 to −2.9% [WT] with reference to 0 kJ·kg−1 vs −1.1% to −4.4% [PT] after 15 kJ·kg−1 and of −4.7% to −8.8% [WT] vs −7.6% to −11.6% [PT] after 45 kJ·kg−1). No consistent differences were found between WT and PT cyclists in MMP values assessed in nonfatigue conditions (after 0 kJ·kg−1), but WT cyclists attained significantly higher MMP values with accumulating levels of fatigue, particularly for long-duration efforts (≥5 min). Conclusions: Our findings highlight the importance of considering fatigue when assessing the record power profile of endurance athletes and support the ability to attenuate fatigue-induced decline in MMP values as a determinant of endurance performance.

Restricted access

Pedro L. Valenzuela, Almudena Montalvo-Perez, Lidia B. Alejo, Mario Castellanos, Jaime Gil-Cabrera, Eduardo Talavera, Alejandro Lucia, and David Barranco-Gil

Purpose : Some power meters are available in both bilateral and unilateral versions. However, despite the popularity of the latter, their validity remains unknown. We aimed to analyze the validity of a unilateral pedal power meter for estimating actual (“bilateral”) power output (PO). Methods: Thirty-three male cyclists were assessed at different POs (steady cycling at 100–500 W, as well as all-out sprints), pedaling cadences (70, 85, and 100 repetitions·min−1), and cycling positions (seated and standing). The PO estimated by a left-only power meter (Favero Assioma Uno) was compared with the actual PO computed by a bilateral power meter (Favero Assioma Duo), and the level of bilateral asymmetry (most- vs least-powerful leg) with the latter system was also computed. Results: Nonsignificant differences, high intraclass correlation coefficients (≥.90), and low coefficients of variation (consistently ≤5% except for low PO levels, ie, 5%–7% at 100 W) were found between Favero Assioma Uno and Favero Assioma Duo. However, although a strong intraclass correlation coefficient (.995) was found between both legs, asymmetry values of 4% to 6% were found for all conditions except when pedaling at the lowest PO (100 W), in which asymmetry increased up to 10% to 13%. Conclusions: Although cyclists tend to present some level of bilateral asymmetry during cycling (particularly at low PO), Favero Assioma Uno provides overall valid estimates of actual PO and is, therefore, an economical alternative to bilateral power meters. Caution is needed, however, when interpreting data at the individual level in cyclists with high levels of asymmetry.

Restricted access

Pedro L. Valenzuela, Xabier Muriel, Teun van Erp, Manuel Mateo-March, Alexis Gandia-Soriano, Mikel Zabala, Robert P. Lamberts, Alejandro Lucia, David Barranco-Gil, and Jesús G. Pallarés

Purpose: To present normative data for the record power profile of male professional cyclists attending to team categories and riding typologies. Methods: Power output data registered from 4 professional teams during 8 years (N = 144 cyclists, 129,262 files, and 1062 total seasons [7 (5) per cyclist] corresponding to both training and competition sessions) were analyzed. Cyclists were categorized as ProTeam (n = 46) or WorldTour (n = 98) and as all-rounders (n = 65), time trialists (n = 11), climbers (n = 50), sprinters (n = 11), or general classification contenders (n = 7). The record power profile was computed as the highest maximum mean power (MMP) value attained for different durations (1 s to 240 min) in both relative (W·kg−1) and absolute units (W). Results: Significant differences between ProTeam and WorldTour were found for both relative (P = .002) and absolute MMP values (P = .006), with WT showing lower relative, but not absolute, MMP values at shorter durations (30–60 s). However, higher relative and absolute MMP values were recorded for very short- (1 s) and long-duration efforts (60 and 240 min for relative MMP values and ≥5 min for absolute ones). Differences were also found regarding cyclists’ typologies for both relative and absolute MMP values (P < .001 for both), with sprinters presenting the highest relative and absolute MMP values for short-duration efforts (5–30 s) and general classification contenders presenting the highest relative MMP values for longer efforts (1–240 min). Conclusions: The present results––obtained from the largest cohort of professional cyclists assessed to date—could be used to assess cyclists’ capabilities and indicate that the record power profile can differ between cyclists’ categories and typologies.

Restricted access

Manuel Mateo-March, Teun van Erp, Xabier Muriel, Pedro L. Valenzuela, Mikel Zabala, Robert P. Lamberts, Alejandro Lucia, David Barranco-Gil, and Jesús G. Pallarés

Purpose: To describe the record power profile of professional female cyclists and to assess potential differences based on the type of rider. Methods: Power output data (32,028 files containing both training and competition sessions recorded) in 44 female professional cyclists during 1–6 years were analyzed. Cyclists were categorized as all-rounders, time trialists, climbers, or sprinters. The record power profile was calculated using the mean maximal power output (MMP) values attained by each cyclist for different-effort durations (5 s to 60 min) expressed in relative (W·kg−1), as well as absolute, power output (W). Results: Participants’ MMP averaged 15.3 (1.8) W·kg−1 for 5 seconds, 8.4 (0.8) W·kg−1 for 1 minute, 5.2 (0.5) W·kg−1 for 10 minutes, and 4.2 (0.4) W·kg−1 for 60 minutes. For short-duration efforts (5–30 s), sprinters attained the highest MMP results, with significantly higher relative (Hedges g = 1.40–2.31) or absolute (g = 4.48–8.06) values than the remainder of categories or climbers only, respectively. Time trialists attained the highest MMP for longer efforts, with higher relative values than both all-rounders and climbers when comparing efforts lasting 10 to 60 minutes (P < .05, g = 1.21–1.54). Conclusions: In professional female cyclists, the record power profile substantially differs based on the specific category of the rider. These findings provide unique insights into the physical capacities of female professional cyclists, as well as a benchmark for coaches and scientists aiming to identify talent in female cycling.

Restricted access

Pedro L. Valenzuela, Jaime Gil-Cabrera, Eduardo Talavera, Lidia B. Alejo, Almudena Montalvo-Pérez, Cecilia Rincón-Castanedo, Iván Rodríguez-Hernández, Alejandro Lucia, and David Barranco-Gil

Purpose: To compare the effectiveness of resistance power training (RPT, training with the individualized load and repetitions that maximize power output) and cycling power training (CPT, short sprint training) in professional cyclists. Methods: The participants (20 [2] y, peak oxygen uptake 78.0 [4.4] mL·kg−1·min−1) were randomly assigned to perform CPT (n = 8) or RPT (n = 10) in addition to their usual training regime for 7 weeks (2 sessions/wk). The training loads were continuously registered using the session rating of perceived exertion. The outcomes included endurance performance (8-min time trial and incremental test), as well as measures of muscle strength/power (1-repetition maximum and mean maximum propulsive power on the squat, hip thrust, and lunge exercises) and body composition (assessed by dual-energy X-ray absorptiometry). Results: No between-group differences were found for training loads or for any outcome (P > .05). Both interventions resulted in increased time-trial performance, as well as in improvements in other endurance-related outcomes (ie, ventilatory threshold, respiratory compensation point; P < .05). A significant or quasi-significant increase (P = .068 and .047 for CPT and RPT, respectively) in bone mineral content was observed after both interventions. A significant reduction in fat mass (P = .017), along with a trend (P = .059) toward a reduced body mass, was observed after RPT, but not CPT (P = .076 for the group × time interaction effect). Significant benefits (P < .05) were also observed for most strength-related outcomes after RPT, but not CPT. Conclusion: CPT and RPT are both effective strategies for the improvement of endurance performance and bone health in professional cyclists, although the latter tends to result in greater improvements in body composition and muscle strength/power.

Restricted access

David Barranco-Gil, Jaime Gil-Cabrera, Pedro L. Valenzuela, Lidia B. Alejo, Almudena Montalvo-Pérez, Eduardo Talavera, Susana Moral-González, and Alejandro Lucia

Purpose: The functional threshold power (FTP), which demarcates the transition from steady state to non-steady-state oxidative metabolism, is usually determined with a 20-minute cycling time trial that follows a standard ∼45-minute warm-up. This study aimed to determine if the standard warm-up inherent to FTP determination is actually necessary and how its modification or removal affects the relationship between FTP and the respiratory compensation point (RCP). Methods: A total of 15 male cyclists (age 35 [9] y, maximum oxygen uptake 66.4 [6.8] mL·kg−1·min−1) participated in this randomized, crossover study. Participants performed a ramp test for determination of RCP and maximum oxygen uptake. During subsequent visits, they performed a 20-minute time trial preceded by the “standard” warm-up that is typically performed before an FTP test (S-WU), a 10-minute warm-up at the power output (PO) corresponding to 60% of maximum oxygen uptake (60%-WU), or no warm-up (No-WU). FTP was computed as 95% of the mean PO attained during the time trial. Results: Although the FTP was correlated with the RCP independently of the warm-up (r = .89, .93, and .86 for No-WU, 60%-WU, and S-WU, respectively; all Ps < .001), the PO at RCP was higher than the FTP in all cases (bias ± 95% limits of agreement = 57 [24], 60 [23], and 57 [32] W for No-WU, 60%-WU, and S-WU, respectively; all Ps < .001 and effect size > 1.70). Conclusions: The FTP is highly correlated with the RCP but corresponds to a significantly lower PO, being these results independent of the warm-up performed (or even with no warm-up).

Restricted access

Thomas Yvert, Catalina Santiago, Elena Santana-Sosa, Zoraida Verde, Felix Gómez-Gallego, Luis Lopez-Mojares, Margarita Pérez, Nuria Garatachea, and Alejandro Lucia

In patients with cystic fibrosis (CF), physical capacity (PC) has been correlated with mortality risk. In turn, PC is dependent on genetic factors. This study examines several polymorphisms associated with PC and healthrelated phenotype traits (VO2peak, FEV1, FVC, PImax and muscular strength) in a group of children with CF (n = 66, primary purpose). The same analyses were also performed in a control group of healthy children (n = 113, secondary purpose). The polymorphisms determined were classified as muscle function polymorphisms (ACE rs1799752; AGT rs699; ACTN3 rs1815739; PTK2 rs7843014 and rs7460; MSTN rs1805086; TRHR rs7832552; NOS3 rs2070744) or energy metabolism polymorphisms (PPARGC1A rs8192678; NRF1 rs6949152; NRF2 rs12594956; TFAM rs1937; PPARD rs2267668; ACSL1 rs6552828). No significant polymorphism/phenotype correlations were detected in children with CF, with marginal associations being observed between NOS3 rs2070744 and VO2peak and FEV1, as well as between PPARGC1A rs8192678 and FEV1. Overall, similar findings were observed in the control group, i.e., no major associations. The PC-related polymorphisms examined seem to have no effects on the PC or health of children with CF.

Restricted access

Pedro L. Valenzuela, Carlos Amo, Guillermo Sánchez-Martínez, Elaia Torrontegi, Javier Vázquez-Carrión, Zigor Montalvo, Alejandro Lucia, and Pedro de la Villa

Purpose: To determine if transcranial direct-current stimulation (tDCS) could be effective for the enhancement of swimming performance or mood state in elite athletes. Methods : Eight male elite triathletes (age = 20 [2] y, maximal oxygen uptake = 71 [4] mL·kg−1·min−1) participated in this crossover, counterbalanced, sham-controlled, double-blind study. Participants received either actual (20 min of anodal stimulation of the motor cortex at 2 mA) or sham tDCS and performed an 800-m swimming test in which rating of perceived exertion and blood lactate response were measured. Mood state (Brunel Mood Scale) was assessed before and after each tDCS session and after the swimming test. Heart-rate variability and central nervous system readiness were assessed before and after each tDCS session. The chances of finding differences between conditions were determined using magnitude-based inferences. Results : A significant and very likely higher Brunel Mood Scale–determined vigor self-perception was found with actual tDCS after the stimulation session (−0.1 [1.2] and 2.0 [2.3] for sham and actual tDCS, respectively; P = .018, effect size = 1.14) and after exercise (−4.1 [2.9] and −0.9 [3.6] for sham and actual tDCS, respectively; P = .022, effect size = 0.98). However, likely trivial and nonsignificant (P > .05) differences were found between conditions in performance (599 [38] s and 596 [39] s, respectively). Unclear and nonsignificant differences were observed between conditions for the rest of the study end points. Conclusions : tDCS elicited a marked increase in vigor self-perception that was maintained after exercise but failed to improve swimming performance in elite triathletes.

Restricted access

Carlos A. Muniesa, Zoraida Verde, Germán Diaz-Ureña, Catalina Santiago, Fernando Gutiérrez, Enrique Díaz, Félix Gómez-Gallego, Helios Pareja-Galeano, Luisa Soares-Miranda, and Alejandro Lucia

Growing evidence suggests that regular moderate-intensity physical activity is associated with an attenuation of leukocyte telomere length (LTL) shortening. However, more controversy exists regarding higher exercise loads such as those imposed by elite-sport participation.

Methods:

The authors investigated LTL differences between young elite athletes (n = 61, 54% men, age [mean ± SD] 27.2 ± 4.9 y) and healthy nonsmoker, physically inactive controls (n = 64, 52% men, 28.9 ± 6.3 y) using analysis of variance (ANOVA).

Results:

Elite athletes had, on average, higher LTL than control subjects, 0.89 ± 0.26 vs 0.78 ± 0.31, P = .013 for the group effect, with no significant sex (P = .995) or age effect (P = .114).

Conclusions:

The results suggest that young elite athletes have longer telomeres than their inactive peers. Further research might assess the LTL of elite athletes of varying ages compared with both age-matched active and inactive individuals.