Polyphenol consumption has become a popular method of trying to temper muscle damage. Cocoa flavanols (CF) have attracted attention due to their high polyphenol content and palatability. As such, this study will investigate whether an acute dose of CF can aid recovery following exercise-induced muscle damage. The study was a laboratory-based, randomized, single-blind, nutrient-controlled trial involving 23 participants (13 females and 10 males). Participants were randomized into either control ∼0 mg CF (n = 8, four females); high dose of 830 mg CF (CF830, n = 8, five females); or supra dose of 1,245 mg CF (CF1245, n = 7, four females). The exercise-induced muscle damage protocol consisted of five sets of 10 maximal concentric/eccentric hamstring curls and immediately consumed their assigned drink following completion. To measure muscle recovery, maximal voluntary isometric contraction (MVIC) of the knee flexors at 60° and 30°, a visual analog scale (VAS), and lower-extremity function scale were taken at baseline, immediately, 24-, 48-, and 72-hr postexercise-induced muscle damage. There was a main effect for time for all variables (p < .05). However, no significant differences were observed between groups for all measures (p ≥ .17). At 48 hr, there were large effect sizes between control and CF1245 for MVIC60 (p = .17, d = 0.8); MVIC30 (p = .26, d = 0.8); MVIC30 percentage change (p = .24 d = 0.9); and visual analog scale (p = .25, d = 0.9). As no significant differences were observed following the consumption of CF, there is reason to believe that CF offer no benefit for muscle recovery when ingested acutely.
Search Results
You are looking at 1 - 2 of 2 items for :
- Author: Adam Field x
- International Journal of Sport Nutrition and Exercise Metabolism x
- Refine by Access: All Content x
Acute Consumption of Varied Doses of Cocoa Flavanols Does Not Influence Exercise-Induced Muscle Damage
Liam D. Corr, Adam Field, Deborah Pufal, Jenny Killey, Tom Clifford, Liam D. Harper, and Robert J. Naughton
Caffeine Gum Improves Reaction Time but Reduces Composure Versus Placebo During the Extra-Time Period of Simulated Soccer Match-Play in Male Semiprofessional Players
Adam Field, Liam Corr, Laurence Birdsey, Christina Langley, Ben Marshall, Greg Wood, Mark Hearris, Diogo Martinho, Christa Carbry, Robert Naughton, James Fleming, Magni Mohr, Peter Krustrup, Mark Russell, and Liam David Harper
This study aimed to determine whether caffeine gum influenced perceptual-cognitive and physical performance during the extra-time period of simulated soccer match-play. Semiprofessional male soccer players (n = 12, age: 22 ± 3 years, stature: 1.78 ± 0.06 m, mass: 75 ± 9 kg) performed 120-min soccer-specific exercise on two occasions. In a triple-blind, randomized, crossover design, players chewed caffeinated (200 mg; caffeine) or control (0 mg; placebo) gum for 5 min following 90 min of soccer-specific exercise. Perceptual-cognitive skills (i.e., passing accuracy, reaction time, composure, and adaptability) were assessed using a soccer-specific virtual reality simulator, collected pre- and posttrial. Neuromuscular performance (reactive-strength index, vertical jump height, absolute and relative peak power output, and negative vertical displacement) and sprint performance (15 and 30 m) were measured at pretrial, half-time, 90 min, and posttrial. Caffeine gum attenuated declines in reaction time (pre: 90.8 ± 0.8 AU to post: 90.7 ± 0.8 AU) by a further 4.2% than placebo (pre: 92.1 ± 0.8 AU to post: 88.2 ± 0.8 AU; p < .01). Caffeine gum reduced composure by 4.7% (pre: 69.1 ± 0.8 AU to post: 65.9 ± 0.8 AU) versus placebo (pre: 68.8 ± 0.8 AU to post: 68.3 ± 0.8 AU; p < .01). Caffeine gum did not influence any other variables (p > .05). Where caffeine gum is consumed by players prior to extra-time, reaction time increases but composure may be compromised, and neuromuscular and sprint performance remain unchanged. Future work should assess caffeine gum mixes with substances like L-theanine that promote a relaxed state under stressful conditions.