Purpose : Assessing the relationship between external load (EL) and internal load (IL) in youth male beach handball players. Methods : A total of 11 field players from the Lithuanian U17 beach handball team were monitored across 14 training sessions and 7 matches. The following EL variables were assessed by means of inertial movement units: PlayerLoad™, accelerations, decelerations, changes of direction, and jumps and total of inertial movements. IL was assessed objectively and subjectively using the summated heart rate zones and training load calculated via session rating of perceived exertion, respectively. Spearman correlations (ρ) were used to assess the relationship between EL and IL. The interindividual variability was investigated using linear mixed models with random intercepts with IL as dependent variable, PlayerLoad™ as the independent variable, and players as random effect. Results : The lowest significant (P < .05) relationship was for high jumps with objective (ρ = .56) and subjective (ρ = .49) IL. The strongest relationship was for PlayerLoad™ with objective (ρ = .9) and subjective (ρ = .84) IL. From the linear mixed model, the estimated SD of the random intercepts was 19.78 arbitrary units (95% confidence interval, 11.75–33.31); SE = 5.26, and R 2 = .47 for the objective IL and 6.03 arbitrary units (95% confidence interval, 0.00–7330.6); SE = 21.87; and R 2 = .71 for the subjective IL. Conclusions : Objective and subjective IL measures can be used as a monitoring tool when EL monitoring is not possible. Coaches can predict IL based on a given EL by using the equations proposed in this study.
Search Results
You are looking at 1 - 10 of 11 items for :
- Author: Andrea Fusco x
- International Journal of Sports Physiology and Performance x
- Refine by Access: All Content x
Relationship Between External and Internal Load Measures in Youth Beach Handball
Alice Iannaccone, Andrea Fusco, Antanas Skarbalius, Audinga Kniubaite, Cristina Cortis, and Daniele Conte
Is It Time to Reconsider the Incremental Test Protocols?
Cristina Cortis, Andrea Fusco, Renato Barroso, Daniel Bok, Daniel Boullosa, Daniele Conte, and Carl Foster
Physical Performance in Elite Male and Female Team-Handball Players
Herbert Wagner, Patrick Fuchs, Andrea Fusco, Philip Fuchs, Jeffrey W. Bell, and Serge P. von Duvillard
Purpose: Biological differences between men and women are well known; however, literature addressing knowledge about the influence of sex on specific and general performance in team handball is almost nonexistent. Consequently, the aim of the study was to assess and compare specific and general physical performance in male and female elite team-handball players, to determine if the differences are consequential for general compared with specific physical performance characteristics and the relationship between general and specific physical performance. Methods: Twelve male and 10 female elite team-handball players performed a game-based performance test, upper- and lower-body strength and power tests, a sprinting test, and an incremental treadmill running test. Results: Significant differences (P < .05) between male and female players were found for peak oxygen uptake and total running time during the treadmill test, 30-m sprinting time, leg-extension strength, trunk- and shoulder-rotation torque, and countermovement-jump height, as well as offense and defense time, ball velocity, and jump height in the game-based performance test. An interaction (sex × test) was found for time and oxygen uptake, and except shoulder-rotation torque and ball velocity in women, the authors found only a low relationship between specific and general physical performance. Conclusion: The results of the study revealed that male players are heavier, taller, faster, and stronger; jump higher; and have better aerobic performance. However, female players performed relatively better in the team-handball-specific tests than in the general tests. The findings also suggest that female players should focus more on strength training.
Effect of Differential Training on Female Volleyball Spike-Jump Technique and Performance
Philip X. Fuchs, Andrea Fusco, Jeffrey W. Bell, Serge P. von Duvillard, Cristina Cortis, and Herbert Wagner
Purpose: To determine the effect of in-season differential training on volleyball spike-jump technique and performance in elite-level female players.
Methods: During the season, spike jumps of 12 elite female players (Austrian Volleyball League Women) were recorded by 13 Qualisys Oqus cameras (250 Hz) and an AMTI force plate (1000 Hz). First measurement was made at the beginning of the investigation. Two identical measurements were repeated after a first and a second interval. The first interval served as control phase. The second interval was comparable in length and regular program but included differential training (6 wk, 8 sessions of 15–20 min) as a modified warm-up. It addressed specific performance determinants. Analyses of variances were calculated for the 3 measurements and for the development during control and intervention phase.
Results: Initial jump height (0.44 [0.09] m) changed by −4.5% during the control phase and +11.9% during the intervention (P < .001,
Simple Approach to Defining Training Intensity in Endurance Runners
Carl Foster, Renato Barroso, Daniel Bok, Daniel Boullosa, Arturo Casado, Cristina Cortis, Jos J. de Koning, Andrea Fusco, and Thomas Haugen
Training intensity distribution is important to training program design. The zones 1 to 2 boundary can be defined by the Talk Test and the rating of perceived exertion. The zones 2 to 3 boundary can be defined by respiratory gas exchange, maximal lactate steady state, or, more simply, by critical speed (CS). The upper boundary of zone 3 is potential defined by the velocity at maximum oxygen uptake (vVO2max), although no clear strategy has emerged to categorize this intensity. This is not normally definable outside the laboratory. Purpose: This study predicts vVO2max from CS, determined from 1 (1.61 km) and 2 (3.22 km) citizen races in well-trained runners. Methods: A heterogeneous group of well-trained runners (N = 22) performed 1- and 2-mile races and were studied during submaximal and maximal treadmill running to measure oxygen uptake, allowing computation of vVO2max. This vVO2max was compared with CS. Results: vVO2max (4.82 [0.53] m·s−1) was strongly correlated with CS (4.37 [0.49] m·s−1; r = .84, standard error of estimate [SEE] = 0.132 m·s−1), 1-mile speed (5.09 [0.51] m·s−1; r = .84, SEE = 0.130 m·s−1), and 2-mile speed (4.68 [0.49] m·s−1; r = .86, SEE = 0.120 m·s−1). Conclusions: CS, calculated from 2 citizen races (or even training time trials), can be used to make reasonable estimates of vVO2max, which can be used in the design of running training programs.
Evidence That Rating of Perceived Exertion Growth During Fatiguing Tasks is Scalar and Independent of Exercise Mode
Hannah Meyer, Jeena Bruenig, Cristina Cortis, Jos J. de Koning, Scott T. Doberstein, Andrea Fusco, Richard P. Mikat, John P. Porcari, Glenn Wright, and Carl Foster
Introduction: The relationship between the percentage of a fatiguing ambulatory task completed and rating of perceived exertion (RPE) appears to be linear and scalar, with a relatively narrow “window.” Recent evidence has suggested that a similar relationship may exist for muscularly demanding tasks. Methods: To determine whether muscularly demanding tasks fit within this “ambulatory window,” we tested resistance-trained athletes performing bench press and leg press with different loadings predicted to allow 5, 10, 20, and 30 repetitions and measured RPE (category ratio scale) at the end of the concentric action for each repetition. Results: There was a regular, and strongly linear, pattern of growth of RPE for both bench press (r = .89) and leg press (r = .90) during the tasks that allowed 5.2 (1.2), 11.6 (1.9), 22.7 (2.0), and 30.8 (3.2) repetitions for bench press and 5.5 (1.5), 11.4 (1.6), 20.2 (3.0), and 32.4 (4.2) repetitions for leg press, respectively. Conclusions: The path of the RPE growth versus percentage task fit within the window evident for ambulatory tasks. The results suggest that the RPE versus percentage task completed relationship is scalar, relatively linear, and apparently independent of exercise mode.
“Falling Behind,” “Letting Go,” and Being “Outsprinted” as Distinct Features of Pacing in Distance Running
Carl Foster, Renato Barroso, Daniel Bok, Daniel Boullosa, Arturo Casado Alda, Cristina Cortis, Andrea Fusco, Brian Hanley, Philip Skiba, and Jos J. de Koning
Introduction: In distance running, pacing is characterized by changes in speed, leading to runners dropping off the leader’s pace until a few remain to contest victory with a final sprint. Pacing behavior has been well studied over the last 30 years, but much remains unknown. It might be related to finishing position, finishing time, and dependent on critical speed (CS), a surrogate of physiologic capacity. We hypothesized a relationship between CS and the distance at which runners “fell behind” and “let go” from the leader or were “outsprinted” as contributors to performance. Methods: 100-m split times were obtained for athletes in the men’s 10,000-m at the 2008 Olympics (N = 35). Split times were individually compared with the winner at the point of “falling behind” (successive split times progressively slower than the winner), “letting go” (large increase in time for distance compared with winner), or “outsprinted” (falling behind despite active acceleration) despite being with the leader with 400 m remaining. Results: Race times ranged between 26:55 and 29:23 (world record = 26:17). There were 3 groups who fell behind at ∼1000 (n = 11), ∼6000 (n = 16), and ∼9000 m (n = 2); let go at ∼4000 (n = 10), ∼7000 (n = 14), and ∼9500 m (n = 5); or were outkicked (n = 6). There was a moderate correlation between CS and finishing position (r = .82), individual mean pace (r = .79), “fell behind” distance (r = .77), and “let go” distance (r = .79). D′ balance was correlated with performance in the last 400 m (r = .87). Conclusions: Athletes displayed distinct patterns of falling behind and letting go. CS serves as a moderate predictor of performance and final placing. Final placing during the sprint is related to preservation of D′ balance.
How to Succeed as an Athlete: What We Know, What We Need to Know
Carl Foster, Renato Barroso, Ralph Beneke, Daniel Bok, Daniel Boullosa, Arturo Casado, Karim Chamari, Cristina Cortis, Jos de Koning, Andrea Fusco, Thomas Haugen, Alejandro Lucía, Iñigo Mujika, David Pyne, José A. Rodríguez-Marroyo, Oyvind Sandbakk, and Stephen Seiler
25 Years of Session Rating of Perceived Exertion: Historical Perspective and Development
Carl Foster, Daniel Boullosa, Michael McGuigan, Andrea Fusco, Cristina Cortis, Blaine E. Arney, Bo Orton, Christopher Dodge, Salvador Jaime, Kim Radtke, Teun van Erp, Jos J. de Koning, Daniel Bok, Jose A. Rodriguez-Marroyo, and John P. Porcari
The session rating of perceived exertion (sRPE) method was developed 25 years ago as a modification of the Borg concept of rating of perceived exertion (RPE), designed to estimate the intensity of an entire training session. It appears to be well accepted as a marker of the internal training load. Early studies demonstrated that sRPE correlated well with objective measures of internal training load, such as the percentage of heart rate reserve and blood lactate concentration. It has been shown to be useful in a wide variety of exercise activities ranging from aerobic to resistance to games. It has also been shown to be useful in populations ranging from patients to elite athletes. The sRPE is a reasonable measure of the average RPE acquired across an exercise session. Originally designed to be acquired ∼30 minutes after a training bout to prevent the terminal elements of an exercise session from unduly influencing the rating, sRPE has been shown to be temporally robust across periods ranging from 1 minute to 14 days following an exercise session. Within the training impulse concept, sRPE, or other indices derived from sRPE, has been shown to be able to account for both positive and negative training outcomes and has contributed to our understanding of how training is periodized to optimize training outcomes and to understand maladaptations such as overtraining syndrome. The sRPE as a method of monitoring training has the advantage of extreme simplicity. While it is not ideal for the precise recording of the details of the external training load, it has large advantages relative to evaluating the internal training load.
Competition Between Desired Competitive Result, Tolerable Homeostatic Disturbance, and Psychophysiological Interpretation Determines Pacing Strategy
Carl Foster, Jos J. de Koning, Florentina J. Hettinga, Renato Barroso, Daniel Boullosa, Arturo Casado, Cristina Cortis, Andrea Fusco, Halle Gregorich, Salvador Jaime, Andrew M. Jones, Katherine R. Malterer, Robert Pettitt, John P. Porcari, Cassie Pratt, Patrick Reinschmidt, Phillip Skiba, Annabel Splinter, Alan St Clair Gibson, Jacob St Mary, Christian Thiel, Kate Uithoven, and Joyce van Tunen
Scientific interest in pacing goes back >100 years. Contemporary interest, both as a feature of athletic competition and as a window into understanding fatigue, goes back >30 years. Pacing represents the pattern of energy use designed to produce a competitive result while managing fatigue of different origins. Pacing has been studied both against the clock and during head-to-head competition. Several models have been used to explain pacing, including the teleoanticipation model, the central governor model, the anticipatory-feedback-rating of perceived exertion model, the concept of a learned template, the affordance concept, the integrative governor theory, and as an explanation for “falling behind.” Early studies, mostly using time-trial exercise, focused on the need to manage homeostatic disturbance. More recent studies, based on head-to-head competition, have focused on an improved understanding of how psychophysiology, beyond the gestalt concept of rating of perceived exertion, can be understood as a mediator of pacing and as an explanation for falling behind. More recent approaches to pacing have focused on the elements of decision making during sport and have expanded the role of psychophysiological responses including sensory-discriminatory, affective-motivational, and cognitive-evaluative dimensions. These approaches have expanded the understanding of variations in pacing, particularly during head-to-head competition.