Search Results

You are looking at 1 - 10 of 10 items for

  • Author: Anh-Dung Nguyen x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Relationship of Knee Motions With Static Leg Alignments and Hip Motions in Frontal and Transverse Planes During Double-Leg Landing in Healthy Athletes

Shogo Uota, Anh-Dung Nguyen, Naoko Aminaka, and Yohei Shimokochi

Context:

Excessive knee valgus and tibial external rotation relative to the femur during weight bearing motions, such as jump-landing, reportedly increases the risk of developing chronic knee pain, such as patellofemoral pain. Excessive deviations from normal ranges of several static lower extremity alignment measures and dynamic hip motions may also increase the risks for patellofemoral pain.

Objective:

To determine the relationship between lower extremity alignments and hip motions to frontal and transverse plane knee motions during double-leg landings.

Design:

Correlational study.

Setting:

Laboratory.

Patients or Other Participants:

69 healthy, competitive athletes (27 men, 42 women; height, 166.5 ± 9.5 cm; weight, 61.3 ± 9.9 kg; age, 20.7 ± 1.0 y) participated in this study.

Interventions:

Prone and supine hip version, quadriceps angle, and tibiofemoral angle were measured. Frontal and transverse knee and hip angles at peak knee extensor moment during landing were calculated.

Main Outcome Measures:

2 separate stepwise multiple regression analyses were conducted to predict frontal and transverse plane knee motions using 4 static lower extremity alignment measures and hip motions.

Results:

Greater hip adduction and prone hip anteversion, and lesser hip internal rotation and supine hip anteversion, were related to greater knee valgus motions (R 2 = .475, P < .01). Greater hip adduction was related to greater knee external rotation (R 2 = .205, P < .01).

Conclusions:

Some targeted static lower extremity alignments and hip motions are associated with frontal and transverse knee motions. However, stronger relationships of hip motions with knee motions than static lower extremity alignments provided evidence that improving hip movements may help improve patellofemoral pain in those with lower extremity malalignments.

Restricted access

Greater Core Endurance Identifies Improved Mechanics During Jump Landing in Female Youth Soccer Athletes

Kate Pfile, Michelle Boling, Andrea Baellow, Emma Zuk, and Anh-Dung Nguyen

Female soccer athletes are at greater risk for anterior cruciate ligament injury compared with males. Risk factors include altered landing biomechanics and diminished core neuromuscular control, measured using advanced laboratory equipment. There is a need for a clinical measure of core muscle function to better understand kinesiological factors within a female, youth athlete population. The purpose was to determine whether sagittal and frontal plane kinematics during a jump landing task differ based on levels of core endurance in female youth soccer athletes. Participants included healthy, female soccer athletes ages 8–17 years (M = 12.3 years, SD = 2.4 years), height (M = 1.52 m, SD = 0.16 m), and body mass (M = 46.0 kg, SD = 13.7 kg). A quantitative data descriptive laboratory study in a field-based setting was conducted. Sixty-six participants performed the side plank test for time to failure. Three-dimensional biomechanics were collected, and initial contact and peak trunk, hip, and knee joint angles were identified during the deceleration phase of a double-leg jump-landing task. The group with the lowest side plank time displayed decreased knee flexion at initial contact (p = .02) and peak knee flexion (p = .03) and decreased peak hip flexion angles (p = .01). There were no additional statistically significant differences among groups (p > .05). Female youth soccer athletes who have reduced core endurance also display decreased hip and knee flexion, which may place them at risk for anterior cruciate ligament injury.

Restricted access

Female Athletes With Varying Levels of Vertical Stiffness Display Kinematic and Kinetic Differences During Single-Leg Hopping

Justin P. Waxman, Kevin R. Ford, Anh-Dung Nguyen, and Jeffrey B. Taylor

Vertical stiffness may contribute to lower-extremity injury risk; however, it is unknown whether athletes with different stiffness levels display differences in biomechanics. This study compared differences in biomechanics between female athletes (n = 99) with varying stiffness levels during a repetitive, single-leg, vertical hopping task. Vertical stiffness was calculated as the ratio of peak vertical ground-reaction force to maximum center-of-mass displacement. Tertiles were established using stiffness values, and separate 1-way ANOVAs were used to evaluate between-group differences. Stance times decreased, and flight times, ground-reaction force, and stiffness increased, from the low- to high-stiffness group (P < .050). The high-stiffness group displayed: (1) greater lateral trunk flexion (P = .009) and lesser hip adduction (P = .022) at initial ground contact compared to the low- and moderate-stiffness groups, respectively; (2) lesser peak hip adduction compared to the low-stiffness group (P = .040); (3) lesser lateral trunk-flexion (P = .046) and knee-flexion (P = .010) excursion compared to the moderate- and low-stiffness groups, respectively; and (4) greater peak hip-flexion (P = .001), ankle-dorsiflexion (P = .002), and ankle-eversion (P = .038) moments compared to the low-stiffness group. A wide range of variability in stiffness exists within a relatively homogenous population. Athletes with varying stiffness levels display biomechanical differences that may help identify the potential mechanism(s) by which stiffness contributes to injury risk.

Restricted access

Preferred Hip Strategy During Landing Reduces Knee Abduction Moment in Collegiate Female Soccer Players

Anh-Dung Nguyen, Jeffrey B. Taylor, Taylor G. Wimbish, Jennifer L. Keith, and Kevin R. Ford

Context: Hip-focused interventions are aimed to decrease frontal plane knee loading related to anterior cruciate ligament injuries. Whether a preferred hip landing strategy decreases frontal plane knee loading is unknown. Objective: To determine if a preferred hip landing strategy during a drop vertical jump (DVJ) is utilized during a single-leg landing (SLL) task and whether differences in frontal plane knee loading are consistent between a DVJ and an SLL task. Design: Descriptive laboratory study. Setting: Research laboratory. Participants: Twenty-three collegiate, female soccer players. Main Outcome Measures: Participants were dichotomized into a hip (HIP; n = 9) or knee/ankle (KA; n = 14) strategy group based on the percentage distribution of each lower extremity joint relative to the summated moment (% distribution) during the DVJ. Separate 1-way analysis of variances examined the differences in joint-specific % distribution and external knee abduction moment between the HIP and KA groups. Results: The HIP group had significantly greater % distribution of hip moment and less % distribution of knee moment compared with the KA group during the DVJ and SLL. External knee abduction moment was also significantly less in the HIP group compared with the KA group during the DVJ. Conclusions: Female soccer athletes who land with a preferred hip strategy during a DVJ also land with a preferred hip strategy during an SLL. The preferred hip strategy also resulted in less external knee abduction moments during the DVJ. Clinical Relevance: Targeting the neuromuscular control of the hip extensor may be useful in reducing risk of noncontact anterior cruciate ligament injuries.

Restricted access

Women’s College Volleyball Players Exhibit Asymmetries During Double-Leg Jump Landing Tasks

Jeffrey B. Taylor, Anh-Dung Nguyen, Audrey E. Westbrook, Abigail Trzeciak, and Kevin R. Ford

Context: Women’s volleyball requires frequent and repetitive jumping that when performed with altered biomechanics, including kinematic or kinetic asymmetry, may place the athlete at high risk for injury. This study identified and analyzed lower-extremity biomechanical asymmetries in college women’s volleyball players during standard and sport-specific double-leg landing tasks. Design: Cross-sectional laboratory study. Methods: Eighteen female college volleyball players were analyzed using standard 3D motion capture techniques during a drop vertical jump and an unanticipated lateral reactive jump task. Repeated-measures multivariate analysis of variance identified asymmetries in kinematic and kinetic variables of each task. Results: Average symmetry indices ranged from 9.3% to 31.3% during the drop vertical jump and 11.9% to 25.6% during the reactive jump task. During the drop vertical jump, the dominant limb exhibited lower knee abduction moments (P = .03), ankle dorsiflexion moments (P = .02), ankle eversion moments (P = .003) and vertical ground reaction forces (P = .03), and greater ankle inversion moments (P = .001). Both kinematic (λ = 0.27, P = .03) and kinetic (λ = 0.12, P = .008) asymmetries were identified during the reactive jump task. The dominant limb exhibited greater peak knee flexion (P = .003) and ankle dorsiflexion (P = .02) angles, and greater ankle dorsiflexion (P = .005) and inversion (P = .03) moments than the nondominant limb. Conclusions: These asymmetries observed during double-leg landing tasks may predispose volleyball athletes to unilaterally higher ground reaction or muscle forces and ultimately a greater risk of injury during landing.

Restricted access

A Comparison of Body Segment Inertial Parameter Estimation Methods and Joint Moment and Power Calculations During a Drop Vertical Jump in Collegiate Female Soccer Players

Sara L. Arena, Kelsey McLaughlin, Anh-Dung Nguyen, James M. Smoliga, and Kevin R. Ford

Athletic individuals may differ in body segment inertial parameter (BSIP) estimates due to differences in body composition, and this may influence calculation of joint kinetics. The purposes of this study were to (1) compare BSIPs predicted by the method introduced by de Leva1 with DXA-derived BSIPs in collegiate female soccer players, and (2) examine the effects of these BSIP estimation methods on joint moment and power calculations during a drop vertical jump (DVJ). Twenty female NCAA Division I soccer players were recruited. BSIPs of the shank and thigh (mass, COM location, and radius of gyration) were determined using de Leva’s method and analysis of whole-body DXA scans. These estimates were used to determine peak knee joint moments and power during the DVJ. Compared with DXA, de Leva’s method located the COM more distally in the shank (P = .008) and more proximally in the thigh (P < .001), and the radius of gyration of the thigh to be further from the thigh COM (P < .001). All knee joint moment and power measures were similar between methods. These findings suggest that BSIP estimation may vary between methods, but the impact on joint moment calculations during a dynamic task is negligible.

Restricted access

Vertical Jump Biomechanics Altered With Virtual Overhead Goal

Kevin R. Ford, Anh-Dung Nguyen, Eric J. Hegedus, and Jeffrey B. Taylor

Virtual environments with real-time feedback can simulate extrinsic goals that mimic real life conditions. The purpose was to compare jump performance and biomechanics with a physical overhead goal (POG) and with a virtual overhead goal (VOG). Fourteen female subjects participated (age: 18.8 ± 1.1 years, height: 163.2 ± 8.1 cm, weight 63.0 ± 7.9 kg). Sagittal plane trunk, hip, and knee biomechanics were calculated during the landing and take-off phases of drop vertical jump with different goal conditions. Repeated-measures ANOVAs determined differences between goal conditions. Vertical jump height displacement was not different during VOG compared with POG. Greater hip extensor moment (P < .001*) and hip angular impulse (P < .004*) were found during VOG compared with POG. Subjects landed more erect with less magnitude of trunk flexion (P = .002*) during POG compared with VOG. A virtual target can optimize jump height and promote increased hip moments and trunk flexion. This may be a useful alternative to physical targets to improve performance during certain biomechanical testing, screening, and training conditions.

Restricted access

The Effects of Gluteal Strength and Activation on the Relationship Between Femoral Alignment and Functional Valgus Collapse During a Single-Leg Landing

Jennifer A. Hogg, Terry Ackerman, Anh-Dung Nguyen, Scott E. Ross, Randy J. Schmitz, Jos Vanrenterghem, and Sandra J. Shultz

Context: A bias toward femoral internal rotation is a potential precursor to functional valgus collapse. The gluteal muscles may play a critical role in mitigating these effects. Objective: Determine the extent to which gluteal strength and activation mediate associations between femoral alignment measures and functional valgus collapse. Design: Cross-sectional. Setting: Research laboratory. Patients or Other Participants: Forty-five females (age = 20.1 [1.7] y; height = 165.2 [7.6] cm; weight = 68.6 [13.1] kg) and 45 males (age = 20.8 [2.0] y; height = 177.5 [8.7] cm; weight = 82.7 [16.5] kg), healthy for 6 months prior. Intervention(s): Femoral alignment was measured prone. Hip-extension and abduction strength were obtained using a handheld dynamometer. Three-dimensional biomechanics and surface electromyography were obtained during single-leg forward landings. Main Outcome Measures: Forward stepwise multiple linear regressions determined the influence of femoral alignment on functional valgus collapse and the mediating effects of gluteus maximus and medius strength and activation. Results: In females, less hip abduction strength predicted greater peak hip adduction angle (R 2 change = .10; P = .02), and greater hip-extensor activation predicted greater peak knee internal rotation angle (R 2 change = .14; P = .01). In males, lesser hip abduction strength predicted smaller peak knee abduction moment (R 2 change = .11; P = .03), and the combination of lesser hip abduction peak torque and lesser gluteus medius activation predicted greater hip internal rotation angle (R 2 change = .15; P = .04). No meaningful mediation effects were observed (υadj < .01). Conclusions: In females, after accounting for femoral alignment, less gluteal strength and higher muscle activation were marginally associated with valgus movement. In males, less gluteal strength was associated with a more varus posture. Gluteal strength did not mediate femoral alignment. Future research should determine the capability of females to use their strength efficiently.

Restricted access

Standing Pelvic Tilt Is Associated With Dynamic Pelvic Tilt During Running When Measured by 3-Dimensional Motion Capture

Madison S. Mach, Kyle T. Ebersole, Hayley E. Ericksen, Anh-Dung Nguyen, and Jennifer E. Earl-Boehm

Standing pelvic tilt (PT) is related to biomechanics linked with increased risk of injury such as dynamic knee valgus. However, there is limited evidence on how standing PT relates to dynamic PT and whether the palpation meter (PALM), a tool to measure standing PT, is valid against 3-dimensional (3D) motion analysis. The purposes of this study were to (1) determine the criterion validity of the PALM for measuring standing PT and (2) identify the relationship between standing PT and dynamic PT during running. Participants (n = 25; 10 males and 15 females) had their standing PT measured by the PALM and 3D motion analysis. Dynamic PT variables were defined at initial contact and toe off. No relationship between the 2 tools was found. Significant large positive relationships between standing PT and PT at initial contact (r = .751, N = 25, P < .001) and PT at toe off (r = .761, N = 25, P < .001) were found. Since no relationship was found between standing PT measured by the PALM and 3D motion analysis, the PALM is not a valid alternative to 3D motion analysis. Clinicians may be able to measure standing PT and gain valuable information on dynamic PT, allowing clinicians to quickly assess whether further biomechanical testing is needed.

Restricted access

Longitudinal Changes in Hip Strength and Range of Motion in Female Youth Soccer Players: Implications for ACL Injury, A Pilot Study

Anh-Dung Nguyen, Emma F. Zuk, Andrea L. Baellow, Kate R. Pfile, Lindsay J. DiStefano, and Michelle C. Boling

Context:

Risk of anterior cruciate ligament (ACL) injuries in young female athletes increases with age, appearing to peak during maturation. Changes in hip muscle strength and range of motion (ROM) during this time may contribute to altered dynamic movement patterns that are known to increase risk of ACL injuries. Understanding the longitudinal changes in hip strength and ROM is needed to develop appropriate interventions to reduce the risk of ACL injuries.

Objective:

To examine the longitudinal changes in hip strength and ROM in female youth soccer players.

Design:

Longitudinal descriptive study.

Setting:

Field setting.

Participants:

14 female youth soccer athletes (14.1 ± 1.1 y, 165.8 ± 5.3 cm, 57.5 ± 9.9 kg) volunteered as part of a multiyear risk factor screening project.

Main Outcome Measures:

Clinical measures of hip strength and ROM were collected annually over 3 consecutive years. Passive hip internal rotation (IR), external rotation (ER), abduction (ABD), and adduction (ADD) ROM were measured with a digital inclinometer. Isometric hip ABD and extension (EXT) strength were evaluated using a hand-held dynamometer. Separate repeated-measures ANOVAs compared hip strength and ROM values across 3 consecutive years (P < .05).

Results:

As youth female soccer players increased in age, there were no changes in normalized hip ABD (P = .830) or EXT strength (P = .062) across 3 consecutive years. Longitudinal changes in hip ROM were observed with increases in hip IR (P = .001) and ABD (P < .001), while hip ADD (P = .009) and ER (P < .001) decreased.

Conclusions:

Anatomical changes at the hip occur as youth female soccer players increase in age. While there are no changes in hip strength, there is an increase in hip IR and ABD ROM with a concomitant decrease in hip ER and ADD ROM. The resulting asymmetries in hip ROM may decrease the activation and force producing capabilities of the hip muscles during dynamic activities, contributing to altered lower extremity mechanics known to increase the risk of ACL injuries.