Context: Landing kinematics have been identified as a risk factor for knee injury. Detecting atypical kinematics in clinical settings is important for identifying individuals at risk for these injuries. Objective: To determine the reliability of a handheld tablet and application (app) for measuring lower-extremity kinematics during drop vertical-jump landings. Design: Measurement reliability. Setting: Laboratory. Participants: 23 healthy young adults with no lower-extremity injuries and no contraindications for jumping and landing. Intervention: Subjects performed 6 drop vertical jumps that were captured with an iPad2 and analyzed with a KinesioCapture app by 2 novice and 2 experienced raters. Three trials each were captured in the frontal and sagittal planes. Main Outcome Measures: Frontal-plane projection angles, knee flexion, and hip flexion at initial contact and maximum knee flexion were measured. ICC and SEM were calculated to determine intertrial and interrater reliability. One-way ANOVAs were used to examine differences between the measured angles of the raters. Results: Average intertrial reliability ranged from .71 to .98 for novice raters and .77 to .99 for experienced raters. SEMs were 2.3-4.3° for novice raters and 1.6-3.9° for experienced raters. Interrater ICC2,1 was .39-.98 for the novice raters and .69-.93 for the experienced raters. SEMs were smallest with the experienced raters, all less than 1.5°. Conclusion: A handheld tablet and app is promising for evaluating landing kinematics and identifying individuals at risk for knee injury in a clinical setting. Intertrial reliability is good to excellent when using average trial measures. Interrater reliability is fair to excellent depending on experience level. Multiple trials should be assessed by a single rater when assessing lower-extremity mechanics with a handheld tablet and app, and results may vary with experience level or training.
Search Results
You are looking at 1 - 2 of 2 items for :
- Author: Barbara C. Belyea x
- Journal of Sport Rehabilitation x
- Refine by Access: All Content x
Deborah L. King and Barbara C. Belyea
Barbara C. Belyea, Ethan Lewis, Zachary Gabor, Jill Jackson, and Deborah L. King
Context: Lower-extremity landing mechanics have been implicated as a contributing factor in knee pain and injury, yet cost-effective and clinically accessible methods for evaluating movement mechanics are limited. The identification of valid, reliable, and readily accessible technology to assess lower-extremity alignment could be an important tool for clinicians, coaches, and strength and conditioning specialists. Objective: To examine the validity and reliability of using a handheld tablet and movement-analysis application (app) for assessing lower-extremity alignment during a drop vertical-jump task. Design: Concurrent validation. Setting: Laboratory. Participants: 22 healthy college-age subjects (11 women and 11 men, mean age 21 ± 1.4 y, mean height 1.73 ± 0.12 m, mean mass 71 ± 13 kg) with no lower-extremity pathology that prevented safe landing from a drop jump. Intervention: Subjects performed 6 drop vertical jumps that were recorded simultaneously using a 3-dimensional (3D) motion-capture system and a handheld tablet. Main Outcomes Measures: Angles on the tablet were calculated using a motion-analysis app and from the 3D motion-capture system using Visual 3D. Hip and knee angles were measured and compared between both systems. Results: Significant correlations between the tablet and 3D measures for select frontal- and sagittal-plane ranges of motion and angles at maximum knee flexion (MKF) ranged from r = .48 (P = .036) for frontal-plane knee angle at MKF to r = .77 (P < .001) for knee flexion at MKF. Conclusion: Results of this study suggest that a handheld tablet and app may be a reliable method for assessing select lower-extremity joint alignments during drop vertical jumps, but this technology should not be used to measure absolute joint angles. However, sports medicine specialists could use a handheld tablet to reliably record and evaluate lower-extremity movement patterns on the field or in the clinic.