Search Results

You are looking at 1 - 5 of 5 items for :

  • Author: Barry Drust x
  • International Journal of Sport Nutrition and Exercise Metabolism x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Daily Distribution of Carbohydrate, Protein and Fat Intake in Elite Youth Academy Soccer Players Over a 7-Day Training Period

Robert J. Naughton, Barry Drust, Andy O’Boyle, Ryland Morgans, Julie Abayomi, Ian G. Davies, James P. Morton, and Elizabeth Mahon

While traditional approaches to dietary analysis in athletes have focused on total daily energy and macronutrient intake, it is now thought that daily distribution of these parameters can also influence training adaptations. Using 7-day food diaries, we quantified the total daily macronutrient intake and distribution in elite youth soccer players from the English Premier League in U18 (n = 13), U15/16 (n = 25) and U13/14 squads (n = 21). Total energy (43.1 ± 10.3, 32.6 ± 7.9, 28.1 ± 6.8 kcal·kg-1·day-1), CHO (6 ± 1.2, 4.7 ± 1.4, 3.2 ± 1.3 g·kg- 1·day-1) and fat (1.3 ± 0.5, 0.9 ± 0.3, 0.9 ± 0.3 g·kg-1·day-1) intake exhibited hierarchical differences (p < .05) such that U13/14 > U15/16 > U18. In addition, CHO intake in U18s was lower (p < .05) at breakfast, dinner and snacks when compared with both squads but no differences were apparent at lunch. Furthermore, the U15/16s reported lower relative daily protein intake than the U13/14s and U18s (1.6 ± 0.3 vs. 2.2 ± 0.5, 2.0 ± 0.3 g·kg-1). A skewed distribution (p < .05) of daily protein intake was observed in all squads, with a hierarchical order of dinner (~0.6 g·kg-1) > lunch (~0.5 g·kg-1) > breakfast (~0.3 g·kg-1). We conclude elite youth soccer players do not meet current CHO guidelines. Although daily protein targets are achieved, we report a skewed daily distribution in all ages such that dinner > lunch > breakfast. Our data suggest that dietary advice for elite youth players should focus on both total daily macronutrient intake and optimal daily distribution patterns.

Restricted access

Case Study: Muscle Atrophy, Hypertrophy, and Energy Expenditure of a Premier League Soccer Player During Rehabilitation From Anterior Cruciate Ligament Injury

Liam Anderson, Graeme L. Close, Matt Konopinski, David Rydings, Jordan Milsom, Catherine Hambly, John Roger Speakman, Barry Drust, and James P. Morton

Maintaining muscle mass and function during rehabilitation from anterior cruciate ligament injury is complicated by the challenge of accurately prescribing daily energy intakes aligned to energy expenditure. Accordingly, we present a 38-week case study characterizing whole body and regional rates of muscle atrophy and hypertrophy (as inferred by assessments of fat-free mass from dual-energy X-ray absorptiometry) in a professional male soccer player from the English Premier League. In addition, in Week 6, we also quantified energy intake (via the remote food photographic method) and energy expenditure using the doubly labeled water method. Mean daily energy intake (CHO: 1.9–3.2, protein: 1.7–3.3, and fat: 1.4–2.7 g/kg) and energy expenditure were 2,765 ± 474 and 3,178 kcal/day, respectively. In accordance with an apparent energy deficit, total body mass decreased by 1.9 kg during Weeks 1–6 where fat-free mass loss in the injured and noninjured limb was 0.9 and 0.6 kg, respectively, yet, trunk fat-free mass increased by 0.7 kg. In Weeks 7–28, the athlete was advised to increase daily CHO intake (4–6 g/kg) to facilitate an increased daily energy intake. Throughout this period, total body mass increased by 3.6 kg (attributable to a 2.9 and 0.7 kg increase in fat free and fat mass, respectively). Our data suggest it may be advantageous to avoid excessive reductions in energy intake during the initial 6–8 weeks post anterior cruciate ligament surgery so as to limit muscle atrophy.

Restricted access

Daily Distribution of Macronutrient Intakes of Professional Soccer Players From the English Premier League

Liam Anderson, Robert J. Naughton, Graeme L. Close, Rocco Di Michele, Ryland Morgans, Barry Drust, and James P. Morton

The daily distribution of macronutrient intake can modulate aspects of training adaptations, performance and recovery. We therefore assessed the daily distribution of macronutrient intake (as assessed using food diaries supported by the remote food photographic method and 24-hr recalls) of professional soccer players (n = 6) of the English Premier League during a 7-day period consisting of two match days and five training days. On match days, average carbohydrate (CHO) content of the prematch (<1.5 g·kg-1 body mass) and postmatch (1 g·kg-1 body mass) meals (in recovery from an evening kick-off) were similar (p > .05) though such intakes were lower than contemporary guidelines considered optimal for prematch CHO intake and postmatch recovery. On training days, we observed a skewed and hierarchical approach (p < .05 for all comparisons) to protein feeding such that dinner (0.8 g·kg-1)>lunch (0.6 g·kg-1)>breakfast (0.3 g·kg-1)>evening snacks (0.1 g·kg-1). We conclude players may benefit from consuming greater amounts of CHO in both the prematch and postmatch meals so as to increase CHO availability and maximize rates of muscle glycogen resynthesis, respectively. Furthermore, attention should also be given to ensuring even daily distribution of protein intake so as to potentially promote components of training adaptation.

Full access

An Alternative Dietary Strategy to Make Weight While Improving Mood, Decreasing Body Fat, and Not Dehydrating: A Case Study of a Professional Jockey

George Wilson, Neil Chester, Martin Eubank, Ben Crighton, Barry Drust, James P. Morton, and Graeme L. Close

Professional jockeys are unique among weight-making athletes, as they are often required to make weight daily and, in many cases, all year-round. Common methods employed by jockeys include dehydration, severe calorie restriction, and sporadic eating, all of which have adverse health effects. In contrast, this article outlines a structured diet and exercise plan, employed by a 22-yr-old professional National Hunt jockey in an attempt to reduce weight from 70.3 to 62.6 kg, that does not rely on any of the aforementioned techniques. Before the intervention, the client’s typical daily energy intake was 8.2 MJ (42% carbohydrate [CHO], 36% fat, 22% protein) consumed in 2 meals only. During the 9-wk intervention, daily energy intake was approximately equivalent to resting metabolic rate, which the athlete consumed as 6 meals per day (7.6 MJ, 46% CHO, 19% fat, 36% protein). This change in frequency and composition of energy intake combined with structured exercise resulted in a total body-mass loss of 8 kg, corresponding to reductions in body fat from 14.5% to 9%. No form of intentional dehydration occurred throughout this period, and mean urine osmolality was 285 mOsm/kg (SD 115 mOsm/kg). In addition, positive changes in mood scores (BRUMS scale) also occurred. The client was now able to ride light for the first time in his career without dehydrating, thereby challenging the cultural practices inherent in the sport.

Restricted access

Energy Intake and Expenditure of Professional Soccer Players of the English Premier League: Evidence of Carbohydrate Periodization

Liam Anderson, Patrick Orme, Robert J. Naughton, Graeme L. Close, Jordan Milsom, David Rydings, Andy O’Boyle, Rocco Di Michele, Julien Louis, Catherine Hambly, John Roger Speakman, Ryland Morgans, Barry Drust, and James P. Morton

In an attempt to better identify and inform the energy requirements of elite soccer players, we quantified the energy expenditure (EE) of players from the English Premier League (n = 6) via the doubly labeled water method (DLW) over a 7-day in-season period. Energy intake (EI) was also assessed using food diaries, supported by the remote food photographic method and 24 hr recalls. The 7-day period consisted of 5 training days (TD) and 2 match days (MD). Although mean daily EI (3186 ± 367 kcals) was not different from (p > .05) daily EE (3566 ± 585 kcals), EI was greater (p < .05) on MD (3789 ± 532 kcal; 61.1 ± 11.4 kcal.kg-1 LBM) compared with TD (2956 ± 374 kcal; 45.2 ± 9.3 kcal.kg-1 LBM, respectively). Differences in EI were reflective of greater (p < .05) daily CHO intake on MD (6.4 ± 2.2 g.kg-1) compared with TD (4.2 ± 1.4 g.kg-1). Exogenous CHO intake was also different (p < .01) during training sessions (3.1 ± 4.4 g.h-1) versus matches (32.3 ± 21.9 g.h-1). In contrast, daily protein (205 ± 30 g.kg-1, p = .29) and fat intake (101 ± 20 g, p = .16) did not display any evidence of daily periodization as opposed to g.kg-1, Although players readily achieve current guidelines for daily protein and fat intake, data suggest that CHO intake on the day before and in recovery from match play was not in accordance with guidelines to promote muscle glycogen storage.