Context: Core control and strength are important for reducing the risk of lower-extremity injury. Current evidence on the effect of core training in male adolescent athletes is limited, and other investigations into the effects of core training often emphasized core strength only. Objective: To examine whether core training emphasizing both control and strength of the trunk and hip would improve joint kinematics during landing, sports performance, and lower-extremity muscle strength in adolescent male volleyball athletes. Design: Single group pretest and posttest design. Setting: University laboratory. Participants: Sixteen male participants (age: 13.4 [1] y, height: 167.8 [8.6] cm, mass: 58.6 [13.9] kg, and volleyball experience: 3.8 [1.5] y) from a Division I volleyball team at a junior high school. Main Outcome Measurements: Kinematics of the trunk and lower-extremity during box landing and spike jump landing tasks, volleyball-related sports performance, and isokinetic strength of hip and knee muscles were assessed before and after a 6-week core training program. Results: After training, the participants demonstrated decreased trunk flexion angle (P = .01, Cohen’s d = 0.78) during the box landing task and reduced the maximum knee internal rotation angle (P = .04, Cohen’s d = 0.56) during the spike jump landing task. The average isokinetic strength of hip flexors and external rotators, and knee flexors and extensors also significantly increased (P = .001, Cohen’s d = 0.98; P = .04, Cohen’s d = 0.57; P = .02, Cohen’s d = 0.66; P = .003, Cohen’s d = 0.87, respectively); however, sports performance did not show significant changes. Conclusions: A more erect landing posture following training suggests that the core training program may be beneficial for improving core stability. The long-term effect of core training for knee injury prevention needs further investigation.
Search Results
You are looking at 1 - 2 of 2 items for :
- Author: Chia-Liang Tsai x
- Athletic Training, Therapy, and Rehabilitation x
- Refine by Access: All Content x
Yi-Ju Tsai, Chieh-Chie Chia, Pei-Yun Lee, Li-Chuan Lin, and Yi-Liang Kuo
Yu-Ting Tseng, Chia-Liang Tsai, Tzu Hsuan Wu, Yi-Wen Chen, and Yi-Hsuan Lin
This study examined whether table tennis as a method of sensorimotor training improves haptic and motor function and to what extent haptic function gain correlates with changes in motor ability in children with probable developmental coordination disorder (pDCD). Children with pDCD were randomly assigned to the table tennis and nontraining control groups. The children in the table tennis group received 36 sessions of table tennis training, including ball balancing, hitting the ball against the wall, strokes, and serving. Haptic sensitivity, acuity, and motor function domains were measured. The results showed a 41.5% improvement in haptic sensitivity in children exposed to table tennis training compared with 2.8% in those without training. This improved haptic sensitivity significantly correlated with motor function gain, suggesting that somatosensory gains occur simultaneously with changes in motor function in children with pDCD. This novel upper limb motor training approach may be an interesting method of sensorimotor training in neurological rehabilitation in children with pDCD.