Search Results

You are looking at 1 - 10 of 63 items for :

  • Author: Iñigo Mujika x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Case Study: Long-Term Low-Carbohydrate, High-Fat Diet Impairs Performance and Subjective Well-Being in a World-Class Vegetarian Long-Distance Triathlete

Iñigo Mujika

The aim of this case study was to report on the performance outcomes and subjective assessments of long-term low-carbohydrate, high-fat (LCHF) diet in a world-class long-distance triathlete who had been suffering from gastrointestinal distress in Ironman competition. The lacto-ovo vegetarian athlete (age = 39 years; height = 179 cm; usual racing body mass = 75 kg; sum of seven skinfolds = 36 mm) changed his usual high carbohydrate (CHO) availability diet to an LCHF diet for 32 weeks (∼95% compliance). He participated in three professional races while on the LCHF diet, but acutely restored CHO availability by consuming CHO in the preevent meals and during the race as advised. The athlete had his worst-ever half-Ironman performance after 21 weeks on the LCHF diet (18th). After 24 weeks on LCHF, he had his second worst-ever Ironman performance (14th) and suffered his usual gastrointestinal symptoms. He did not finish his third race after 32 weeks on LCHF. He regained his usual performance level within 5 weeks back on a high CHO diet, finishing second and fourth in two Ironman events separated by just 3 weeks. Subjective psychological well-being was very negative while on the LCHF diet, with feelings of depression, irritability, and bad mood. In conclusion, this long-term (32 weeks) LCHF intervention did not solve the gastrointestinal problems that the athlete had been experiencing, it was associated with negative performance outcomes in both the half-Ironman and Ironman competitions, and it had a negative impact on the athlete’s subjective well-being.

Restricted access

Olympic Preparation of a World-Class Female Triathlete

Iñigo Mujika

Detailed accounts of the training programs followed by today’s elite triathletes are lacking in the sport-science literature. This study reports on the training program of a world-class female triathlete preparing to compete in the London 2012 Olympic Games. Over 50 wk, she performed 796 sessions (303 swim, 194 bike, 254 run, 45 strength training), ie, 16 ± 4 sessions/wk (mean ± SD). Swim, bike, and run training volumes were, respectively, 1230 km (25 ± 8 km/wk), 427 h (9 ± 3 h/wk), and 250 h (5 ± 2 h/wk). Training tasks were categorized and prescribed based on heart-rate values and/or speeds and power outputs associated with different blood lactate concentrations. Training performed at intensities below her individual lactate threshold (ILT), between the ILT and the onset of blood lactate accumulation (OBLA), and above the OBLA for swim were 74% ± 6%, 16% ± 2%, 10% ± 2%; bike 88% ± 3%, 10% ± 1%, 2.1% ± 0.2%; and run 85% ± 2%, 8.0% ± 0.3%, 6.7% ± 0.3%. Training organization was adapted to the busy competition calendar (18 events, of which 8 were Olympic-distance triathlons) and continuously responded to emerging information. Training volumes were 35–80% higher than those previously reported for elite male and female triathletes, but training intensity and tapering strategies successfully followed recommended best practice for endurance athletes. This triathlete placed 7th in London 2012, and her world ranking improved from 14th to 8th at the end of 2012.

Open access

Sport Science Is a Team Effort

Iñigo Mujika

Full access

Winning the BIG Medals

Iñigo Mujika

Open access

Quantification of Training and Competition Loads in Endurance Sports: Methods and Applications

Iñigo Mujika

Training quantification is basic to evaluate an endurance athlete’s responses to training loads, ensure adequate stress/recovery balance, and determine the relationship between training and performance. Quantifying both external and internal workload is important, because external workload does not measure the biological stress imposed by the exercise sessions. Generally used quantification methods include retrospective questionnaires, diaries, direct observation, and physiological monitoring, often based on the measurement of oxygen uptake, heart rate, and blood lactate concentration. Other methods in use in endurance sports include speed measurement and the measurement of power output, made possible by recent technological advances such as power meters in cycling and triathlon. Among subjective methods of quantification, rating of perceived exertion stands out because of its wide use. Concurrent assessments of the various quantification methods allow researchers and practitioners to evaluate stress/recovery balance, adjust individual training programs, and determine the relationships between external load, internal load, and athletes’ performance. This brief review summarizes the most relevant external- and internal-workload-quantification methods in endurance sports and provides practical examples of their implementation to adjust the training programs of elite athletes in accordance with their individualized stress/recovery balance.

Restricted access

The Cycling Physiology of Miguel Indurain 14 Years After Retirement

Iñigo Mujika

Age-related fitness declines in athletes can be due to both aging and detraining. Very little is known about the physiological and performance decline of professional cyclists after retirement from competition. To gain some insight into the aging and detraining process of elite cyclists, 5-time Tour de France winner and Olympic Champion Miguel Indurain performed a progressive cycle-ergometer test to exhaustion 14 y after retirement from professional cycling (age 46 y, body mass 92.2 kg). His maximal values were oxygen uptake 5.29 L/min (57.4 mL · kg−1 · min−1), aerobic power output 450 W (4.88 W/kg), heart rate 191 beats/min, blood lactate 11.2 mM. Values at the individual lactate threshold (ILT): 4.28 L/min (46.4 mL · kg−1 · min−1), 329 W (3.57 W/kg), 159 beats/min, 2.4 mM. Values at the 4-mM onset of blood lactate accumulation (OBLA): 4.68 L/min (50.8 mL · kg−1 · min−1), 369 W (4.00 W/kg), 170 beats/min. Average cycling gross efficiency between 100 and 350 W was 20.1%, with a peak value of 22.3% at 350 W. Delta efficiency was 27.04%. Absolute maximal oxygen uptake and aerobic power output declined by 12.4% and 15.2% per decade, whereas power output at ILT and OBLA declined by 19.8% and 19.2%. Larger declines in maximal and submaximal values relative to body mass (19.4–26.1%) indicate that body composition changed more than aerobic characteristics. Nevertheless, Indurain’s absolute maximal and submaximal oxygen uptake and power output still compare favorably with those exhibited by active professional cyclists.

Full access

From Superfit to Superfat

Iñigo Mujika

Full access

Challenges of Team-Sport Research

Iñigo Mujika

Full access

Sport Science in the 2010 Vancouver Winter Olympics

Iñigo Mujika

Full access

Too Young to Vote, Old Enough to Be an Olympic Champion

Iñigo Mujika